Prospects of Next Generation Safety Analysis Code and Experience of high performance computing

2013. 10. 26

Presented for SNA+MC2013 Workshop in Paris, France

Bub Dong Chung¹⁾

1) Korea Atomic Energy Research Institute, Korea

bdchung@kaeri.re.kr

Thermal Hydraulics
Safety Research Division

Contents

- Current safety analysis code in KAERI
- Prospects of next generation safety analysis code
- Experience of high performance computing (or demands)
 - LOFT L2-5 LBLOCA Uncertainty quantification by Monte-Carlo method
 - ♦ Whole core physic analysis using transport code linked with CFD
- Concluding remarks

Current Safety Analysis Code in KAERI

- Design Analysis Codes
 - Nuclear design codes (from Monte-Carlo to Diffusion scale)
 - Core TH codes (from RANS to Subchannel scale)
 - Fuel analysis codes (from FEM to in-house 1D scale)
 - Safety analysis code
 - One of key design code for safety system as well as integral system performance
- Current Utilization of Safety Analysis Code
 - Westinghouse Design (PWR) Code (since 1980s)
 - > CEFLASH, WFLASH, WCOBRA/TRAC
 - AECL (CANDU) Design code (since 1990s)
 - > SOPHT, CATHENA etc
 - Best Estimate Code utilized by Regulatory Body (since 1980s)
 - > RELAP5/MOD3, TRACE, COBRA-TF, MARS-KS
 - GEN-IV system TH analysis
 - MARS-LWR(SFR), GAMMA(VHTR)

Current Safety Analysis Code in KAERI

- "MOSAIQUE" is a fully automated software to support the uncertainty and sensitivity analysis of thermal-hydraulic calculations.
 - Sampling uncertainty parameters
 - Generating the input files for TH system code with uncertainty parameters
 - Running a TH code with cluster
 - Analyzing the results
- At present, MOSAIQUE supports many system TH codes. Use Client PCs in the Intranet for TH calculations
 - Automatically assigns the TH calculations to client PCs
 - Independent parallel calculations in client PCs.
 - When a client PC completes a TH calculation, it return results to the master PC.

Current Safety Analysis Code System in KAERI

Uncertainty CONTAINMENT **Analysis** Tool SYSTEM CONTAIN2.0 (DLL) CORE System Analysis **MOSAIQUE** Code (RELAP5, MARS, Subchannel Master-client MARS-SFR) analysis code Computing 3D Kinetics **FUEL Performace** CONTEMPT4 (MATRA, COBRA- Parallel (FRAP, COSMOS) (MASTER) (DLL) TF) computing

Prospects of Next Generation Safety Analysis Code

- Current Safety Analysis Code System
 - Validated with huge experimental data base (LWR) during last few decades
 - Contributing to solve the operating licensing issue for 3D kinetics coupled problem(CANDU LBLOCA) and 3D TH behavior (UPI PWR)
 - Utilizing for GEN-IV design analysis with some modifications
- Advanced Simulation versus Next Generation Code
 - By the definition of GIF task force, advanced model is mechanistic modeling for fundamental phenomena. It is also called "first principle solution".
 - Example
 - > Full core simulation with Monte-Carlo method
 - > TH Simulation with DNS (at least LES level)
 - > Fuel, material behavior with Molecular Dynamics (at least microstructure level)
 - The depletion calculation with advanced simulation may be possible with supercomputing power, however transient simulation within next few decades is doubtful
 - Focus next generation codes for advanced safety analysis

Research and Development 6 http://www.kaeri.re.kr

Prospects of Next Generation Safety Analysis Code

- **Next Generation Safety Analysis**
 - May be categorized according to the objectives of the analysis
 - In licensing analyses
 - > the objective is to provide a high-confidence measure of the safety margins and demonstrate the defense-in-depth design. Uncertainties in the analysis must be quantified to a degree that satisfies a level of confidence set by the regulator.
 - In research and development analysis
 - > the objective is to gain better understanding of physical phenomena and their interactions relevant to materials and equipment for advanced reactor concepts, expecting the replacement of expensive large validation experiment
 - At this moment, the best approach for future safety analysis code may be dual-path programs in KAERI
 - > An integrated safety analysis with statistical & PSA tool, aiming uncertainty reduction
 - Code coupling with next generation analysis codes (i.e. Multi-physics), aiming more realistic core behavior and accuracy enhancement,
 - In both areas, high performance computing are needed

Experience of high performance computing

- LOFT L2-5 LBLOCA Uncertainty quantification by Monte-Carlo method
 - Performed by OECD/NEA BEMUSE Program (2007)
 - Code :
 - MARS System analysis code (similar to RELAP5)
 - > 2 fluid, multi-dimensional system TH
 - Point kinetics & Simple Fuel model
- Whole core physic analysis using transport code linked with CFD
 - Performed by US-ROK collaborative DOE I-NERI project
 - Code System
 - ➤ Core Physics: DeCART (3D full core transport) ← McCARD (MC)
 - Core TH: Start-CD (RANS CFD)
 - Fuel: NEPTUNE (FEM)
 - Coupling technique : Data transfer with TCP/IP protocol

World-wide Uncertainty Propagation Method for LOCA

- USNRC methods : CSAU method
 - Response surface construction using sensitivity analysis
 - ◆ Monte-carlo calculation with response surface(> 50,000), Find pdf
- □ GRS, IPSN, K-REM(KEPCO), ASTRUM(W) methods:
 - identify and combine input uncertainties, using subjective pdfs.
 - Monte-Carlo calculation with direct calculation
 - Find 95%/95% tolerance limit value or curve (by limited number of calculation according to non-parametric statistics; Wilks' formula)
- Number of code calculations can be determined by Wilks' formula
 - Number of code runs n
 - upper statistical tolerance limit (one-sided): 1 $\alpha^n > \beta$
 - α is desired probability percentile,
 - β is confidence level
 - One sided 95% probability, 95% confidence limit require 59 calculations (non-parametric statistics)
 - If Wilks' formula at the second order, 93 sample set is needed

95%/95% Tolerance limit of PCT

- Motivation to compare with the results from full Monte-Carlo method
 - Approach based on Wilks' formula is an ad-hoc approach with a limited computing power
 - Need to find the statistical fluctuation of small sampling (~ 100 runs)
 effects for non-parametric statistical method
 - ◆ Full Monte-Carlo approach, more than 10,000 runs are needed

This semi-auto process has been now replaced with "MOSAIQUE", which is a fully automated software

- CPU times
 - 3.0 GHZ CPU with Window XP
 - Estimated computing time for scheduled 10,000 runs
 - > 100 days on single core
 - > 10 days on 10 nodes PC cluster
 - When 4,000 calculations were obtained, terminate calculations intentionally
- Selection of results
 - ◆ Failure rate ~ 7%
 - Calculation failures were not systematic, but random.
 - May be from code deficiencies at low P and flow condition, after the completion of core quench
 - Discard the failure cases
 - 3,500 success runs were used for statistical treatments

Research and Development http://www.kaeri.re.kr

Full Monte-Carlo Calculation (PCT Distributions)

- Histogram
 - ♦ Use success 3,500 PCT data
- Blowdown PCT
 - Two peaks
 - Blowdown CHF bifurcation
- Reflood PCT
 - Two peak
 - Rewet bifurcation just after blowdown
- Bifucation phenomena is difficult to capture using response surface method and others

Comparison with Tolerance Limits based on Wilks' Formula

- Tolerance limit value is higher than the 95% limit value by 95% confidence level, it means there is a risk of 5% under-prediction
- Statistical variance can reduce significantly with increasing Wilks' order, but still too high to quantify the safety margin (license margin)

Lessons

Results

- The uncertainty method using non-parametric statistics, i.e. Wilks' formula, is an ad-hoc approach with a limited computing power
- It may be useful for auditing evaluation of existing design
- However, full Monte-Carlo method is needed to quantify the design safety (license) margin
- Need of High Performance Computer
 - 1 week computing time was required for LOFT LBLOCA (50 sec transients) using 10 core machine
 - For practical BEPU LOCA application to PWR full scale
 - > < 1 day calculation speed may be necessary to get LOCA full spectrum analysis
 - > numbers of core ~ 10core x10(500sec)x10(1day)=1,000 core
 - ◆ For SBLOCA, longer time is needed (> 3000 sec)
 - > ~ 10,000 core is needed
 - To support risk informed regulation
 - > Huge numbers of scenarios according PSA event tree

Research and Development http://www.kaeri.re.kr

Experience of US-ROK collaborative DOE I-NERI project

Whole core physic analysis using transport code linked with CFD

DeCART: Deterministic Core Analysis based on Ray Tracing

McCARD: Monte-Carlo Code for Advanced Reactor Design and Analysis

Experience of US-ROK collaborative DOE I-NERI project

- Whole core calculations have been performed successfully for a small PWR.
- The neutronic model included nearly 5 million neutronic zones, while the CFD RANS model included 73 million cells.
- Calculations were performed on the Jazz LINUX Cluster at ANL, using 57 of the available 350 processors.
- Results were obtained in several hours, demonstrating the feasibility of running whole core calculations on currently available parallel computer systems.

Fig. 3.3.2. Schematic of the DeCART/STAR-CD Coupling Scheme.

Fig. 4.1.11. Pin power (left) and average fuel temperature (right) for the core mid-plane and the plane with the highest power. (The scale is from 0 to 2.5 for pin power and from 550K to 1100K for fuel temperature).

Lessons

Need of HPC

- Transient Application of Coupled System
 - Core : 3D Transport CFD RANS(+ Subchannel) Fuel (1D/3D)
 - System : Conventional System Code (RELAP5, MARS, etc)
- Considering a typical core have 50,000 fuel rods and 50,000 subchannels. May need >10,000 core
- Expected improvement area of safety analysis
 - AOO : More accurate DNB margin calculation based on full core pin-power and subchannel behavior
 - RIA : More detailed pin-wise power coupled with TH and fuel behavior, direct evaluation of fuel failure rate
 - > SLB : More detailed thermal mixing and re-critical evaluation
 - Radiological Consequences : Accurate source term with pinwise evaluation
- Uncertainty quantification of high fidelity model for engineering purpose
 - Brute force MC method may be not possible
 - > Combination of perturbation and MC method

Concluding remarks

- At this moment
 - dual-path programs for future safety analysis code system are considering in KAERI
- Integrated safety analysis with uncertainty quantification tools
 - Demonstrate the defense-in-depth design and reduce uncertainty
 - Utilizing HPC
 - > Enable full spectrum analysis of DBA with UQ
 - > Support risk informed regulation
 - Safety margin quantification for licensing analysis require huge number of calculations
- Code coupling with next generation analysis tools (i.e. Multiphysics)
 - More realistic full core behavior and accuracy enhancement based on high fidelity models which is now available
 - > 3D transport neutronics code (few million nodes)
 - > RANS scale TH or subchannel code (few million nodes)
 - > 3D FEM or in-house 1D fuel performance code (few million nodes)
 - Conventional system TH code (few hundred nodes)

APPENDIX

Examples of Calculation Result

Application for CANDU (PHWR) LBLOCA

- Safety issue during licensing for Wolsong #1 reoperation
- Power peak during LBLOCA due to positive moderator coefficient
- Coupled analysis with 3D kinetics is utilizing for auditing calculation

Kori Unit 1 UPI LBLOCA Audit Calculation

- Safety issue during licensing for Kori #1
 Life extension
- Multidimensional behaviour during LBLOCA reflood phase
- Full 3D analysis show the nonconservatism of 1D calculation
- BE+Uncertainty still below safety limit

Application for Detailed Core TH Behavior

- 25 Finger Control Element Assemble Drop Accident
 - CUPID-MASTER(3D Kinetics) Coupled Calculation

Possible Software for the Multi-Scale Multi-Physics Analysis

Software Project	Thermal Hydraulics				Neutronics		
	System	Macro	Meso (DNS)	Commercial CFD	Diffusion	Transport	Monte Carlo
KAERI	MARS (SPACE)	MATRA CUPID (Developi ng)	-	TBD (Start-CD)	MASTER	DeCART	McCARD (SNU)

Software Project		Fuel Performance	Structural Mechanics	Chemistry	Uncertainty Quantification	Multi-physics Multi-mesh Integrator
	KAERI	COSMOS (developing)	TBD (NEPTUNE)	-	MOSAIQUE	-

Research and Development 26 http://www.kaeri.re.kr

Long term prospect (KAERI)

Short term

Mid-term

Long term

Establish Base tech and coupling tech.

AMS with personal Supercomp cluster

Application NPP Utilize New Design

Integrated Analysis Platform

- Coupling Tech.
- Nuclear & Mat. DB
- Core Physics
- Core TH
- Fuel Performance
- Water-chemistry

Realization of Advance M&S

- Structure Coupling
- Material Science
- Base DB Extension
- Parallel Compute
- Utilize personal GPU supercomp.

Application of VF

- Uncertainty Quant
- App. for Design
- App. for SA
- Utilize worldclass supercomp.

These pictures were taken from the presentation material of EU-NURESIM, US-CASL Project