

Advanced Manufacturing Supporting Gen IV Reactor Systems

Dr. Isabella Van Rooyen

15 April 2025

Some Housekeeping Items

Ŷ	Listen through your computer	Please select the "use computer audio" option and check that your speakers/headphones are not muted.
2	Technical Difficulties	Search the Zoom Webinars Support https://support.zoom.com/hc/en/article?id=zm_kb&sysparm_article=KB0064143
?	To ask a question	Select the "Q&A" pane on your screen and type in your question
	Share with others or watch it again	A video/audio recording of the webinar and the slide deck will be made available at <u>www.gen-4.org</u>
9	Please take the survey	A brief online survey will follow the webinar.

To Ask a Question – Use the Q&A function

Advanced Manufacturing Supporting Gen IV Reactor Systems

Dr. Isabella Van Rooyen

15 April 2025

PNNL-SA-210516

GEN IV International Forum Meet the Presenter

Dr. Isabella J. van Rooyen is a Senior Technical Advisor for Advanced Material Systems at Pacific Northwest National Laboratory (PNNL), following 10.5 years at Idaho National Laboratory (INL) as a Distinguished Staff Scientist.

Dr. van Rooyen supports the Department of Energy, Office of Nuclear Energy as (1) United States representative and co-chair on the International Advanced Manufacturing and Materials Engineering Working Group for Generation IV reactors (GIF AMME WG); (2) Advanced Material and Manufacturing technical area lead for Advanced Materials and Manufacturing Technologies (AMMT) program; and (3) previously as National Technical Director for the "Advanced Methods for Manufacturing" (AMM) program.

Experience spans nuclear, aerospace, and automotive industries for high temperature materials development (e.g., SiC, Zircaloy, beryllium, titanium, nickel alloys, tungsten-copper, composite materials, Fe-based alloys, Ni-based alloys, HEA), nuclear fuels (e.g., UO₂, UCO, U₃Si₂, TRISO) and advanced manufacturing techniques such as laser materials processing (joining, welding, cladding, etc.), casting processes, powder metallurgy (sintering, hot isostatic pressing (HIP), etc.), and additive manufacturing (AM) processes.

Dr. van Rooyen has more than 60 journal publications, 40 conference contributions, 7 granted patents and holds a PhD (physics), MSc (metallurgy), and MBA.

Email: Isabella.VanRooyen@pnnl.gov

GEN IV International Forum

Overview

- What is Advanced Manufacturing?
- GIF Advanced Manufacturing and Materials Engineering Working Group (AMME WG) and Surveys
- Selected examples of current works:
 - Additive Manufacturing Overview of Framatome's Application Perspective
 - Joining and Welding Techniques
 - Large Scale Manufacturing
 - Profile Forming Processes
 - Cold Spray Processing for Nuclear Energy Applications
 - New Techniques or Applications
 - Non-Destructive Examination
- Supply Chain Challenges and Opportunities
- Advanced Manufacturing Acceptance in ASME
- US Advanced Materials and Manufacturing Technologies Program
- Final Remarks

Contribution Acknowledgments

- AMME WG co-chairs and members
- AMMT Leadership & Researchers
- Marc Albert (EPRI)
- Charles Carpenter (AMRC)
- Kumar Sridharan (Wisconsin-Madison)
- Didier BARDEL and Chris Wiltz (Framatome)
- Adrian Wagner (INL)
- Aninda Dutta Ray (IAEA)
- Eric MacDonald, Pedro Cortes (UTEP)
- Xiaoyuan Lou (Purdue University)
- Soumya Nag (ORNL)
- Priyanka Agrawal (North Texas University)
- Subhashish Meher, Ankit Roy, Mohan Sai Kiran Kumar Yadav Nartu, Chinthaka Silva, Thomas Hartman, Mageshwari Komarasamy, Matthew Olszta, Julian Escobar Atehortua, Ramprashad Prabhakaran, Carolyne Burns, Zachary Kennedy, Amrita Lall, Michelle Fern, Saumyadeep Jana, David Garcia, Mayur Pole, Ken Ross, Jorge Dos Santos, Robert Montgomery, Praveen Thallapy, Pratikshya Meher, Cindy Powell, Jorge F. dos Santos, Glenn Grant, Scott Whalen; Saumyadeep Jana, Dalong Zhang, David W. Gotthold, Kenneth Ross, Robert Montgomery, Jack Lareau, Asif Mahut, Daniel Yoon, David Garcia, Tian Wang, Ankit Roy, Pratikshya Meher (PNNL)

The presentation here was supported by the Advanced Materials and Manufacturing Technology (AMMT) program and the Innovative Nuclear Materials (INM) program of the DOE Office of Nuclear Energy, as well as internal PNNL Laboratory Directed Research and SPPSi funded research. PNNL is a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.

What is Advanced Manufacturing?

- Advanced manufacturing encompasses the use of innovative technologies to improve and optimize all aspects of the manufacturing process, from product conception to end-of-life, with the goal of enhancing efficiency, productivity, and competitiveness. It involves integrating advanced technologies like robotics, automation, and data analytics into traditional manufacturing processes.
- The US NRC is currently evaluating 5 advanced manufacturing techniques:
 - "Mature" Technologies: Powder metallurgy hot isostatic pressing (PM-HIP), Electron beam welding (EBW) & Cold Spray
 - New Technologies: Additive manufacturing (Laser powder bed fusion (L-PBF) and Direct energy deposition (DED)
- Nuclear Energy Institute (NEI) identified 16 advanced manufacturing methods that are of the most interest to fabricate components for nuclear power plants.

Interest in collaborative activities remains high

GIF Advanced Manufacturing and Materials Engineering Working Group (AMME WG)

- Started in 2018 as a task force, converted to a working group in October 2023
- A publicly accessible website:

https://www.gen-4.org/gif-activities/workinggroups/advanced-manufacturing-and-materials-engineeringworking-group

GENIE International Forum		۹	Search	SAVED RESOURCES	O PUBLIC	LOGIN C GIF MEMBER AREA
GIF ACTIVITIES	INDUSTRY ENGAGEMENT		EVENTS AND RESOURCES	GENERATION IV AND TECHNOL	CRITERIA LOGIES	ABOUT GIF
Hore > GIF Activities > Working Gro	ed Manuf		oturing	and		
Materia Group	ls Engir	he	ering V	Vorkir	ng	

GEN IV International Forum

Advanced Manufacturing and Materials Engineering Working Group (AMME WG)

Objectives

The overarching main objective of the AMME-WG is to promote the use of advanced manufacturing and materials engineering technology **to reduce the time to deployment** of advanced reactor systems.

Specifically, the WG aims to *promote international collaboration on the qualification* of advanced materials and manufacturing processes for use in Generation IV reactors.

Members							
Two Country Representatives	One Representative						
Canada	Australia						
France (+ additional substitute)	China						
Korea	Japan						
US	Switzerland						
	UK						
5 Observers (Industry) and Ad hoc Observers: IAEA							
GEN International Forum							

	#		Name	First Name	Function	Address	Email	
	EURA	IRATOM					-	
	1	1)	NILSSON	Karl-Fredrik	Observer	European Commission DG-JRC	Karl-Fredrik.NILSSON@ec.europa.eu	
	2	2)	SIMONOVSKI	lgor	Member	European Commission DG-JRC	Igor.SIMONOVSKI@ec.europa.eu	
	IAEA							
	3	1)	DUTTA RAY	Aninda	Observer		A.Dutta-Ray@iaea.org	
	AUST	USTRALIA						
	4	1)	EDWARDS	Lyndon	Co-chair	Part time Honorary Fellow ANSTO	lyndonedwards@icloud.com	
	CAN	ADA						
	5	1)	TEYSSEYRE	Sebastien	Member	Canadian Nuclear Laboratories Limited	sebastien.teysseyre@cnl.ca	
	6	2)	IVAN	Lucian	Member	Canadian Nuclear Laboratories Limited	lucian.ivan@cnl.ca	
1	СНІМ	Α						
L	7		ZHANG	Lefu	Member	Associate Professor and Assistant Dean	lfzhang@sjtu.edu.cn	
L	FRAN	ICE	•		•		· · · · ·	
L	8	1)	CABET	Celine	Member	CEA PARIS SACLAY	Celine.CABET@cea.fr	
L	9	3)	GIROUX	Pierre-Franco	Member	CEA Paris-Saclay	pierre-francois.giroux@cea.fr	
L	Japai	n	•					
L	10	1)	KAMIJI	Yu	Member	Sector of Fast Reactor and Advanced	kamiji.yu@jaea.go.jp	
L	Korea							
L	11	1)	PARK	Sang-Gyu	Member	KAERI	sgpark82@kaeri.re.kr	
L	12	2)	кім	Hyun Gil	Member	KAERI	hgkim@kaeri.re.kr	
L	SWIT	ZERL	AND					
L	13	1)	POUCHON	Manuel	Member	Paul Scherrer Institute	manuel.pouchon@psi.ch	
	UNIT	ED K	INGDOM					
	14	1)	CARPENTER	Charles	Member	Nuclear Advanced Manufacturing Park	charles.carpenter@namrc.co.uk	
	UNIT	ED S	TATES OF AMER	ICA				
	15	1)	MESSNER	Mark	Co-chair	Structural Mechanics Engineer	messner@anl.gov	
	16 2) VAN ROOYEN Isabella J.		Isabella J.	Co-chair	Pacific Northwest National Laboratory	Isabella.vanrooyen@pnnl.gov		
	NUCL	NUCLEAR ENERGY AGENCY						
	17		POPLAVSKAIA	Elena	Secretary	NEA/SCI/DB	Elena.POPLAVSKAIA@oecd-nea.org	
	OBSE	SERVERS						
			SÁEZ				alberto.saez@ciemat.es	
	18		MADERUELO	Alberto	Observer	SCWR co-chair, CIEMAT		
	19 FERRO Federico LFR indusry		LFR indusry p	ANSALDO NUCLEARE	Federico.Ferro@ann.ansaldoenergia.com			
	20		GARCIA FERRE	Francisco	LFR indusry p	Newcleo	trancisco.garcia.ferre@newcleo.com	
	21		Virgillito	Enrico	LFR indusry p	Newcleo, substitute of Francisco	enrico.virgillito@newcleo.com	
	22		BAULIN	Oriane	LFR indusry p	Newcleo	oriane.baulin@newcleo.com	
23 MAN Liu IAEA observ			LIU	IALA observe	IALA	M.Liu@iaea.org		

Description of AMME WG Technical Work Scope

AMME WG Task 1: Engagement: trends over time

■ 2023 ■ 2021 ■ 2019

Uniform increase in general engagement with AMTs

Large recent increase in regulatory engagement

Number of respondents

AMME WG Task 1: Components & Properties trends over time

	2023	2021	2019
Steels	1	1	1
Nickel alloys	2	2	2
Ceramics	3	3	4
Other	4	4	3

- Steels still highest interest, focus on traditional engineering materials
- Interest in ceramics seems to be increasing relative to metals

- High temperature properties (e.g. creep & creep/fatigue)
- Irradiated properties
 - (e.g., Irradiation affected toughness, creep, SSC etc.)

Components: normalized

- Interest in cladding decreased
- Interest in reactor internals increased
- Interest in reactor vessels slightly increased

AMME WG Task 1: Manufacturing Techniques Interest: Comparison to 2021

Manufacturing techniques (normalized scores)

- Significant that advanced welding (better ways of doing existing manufacturing) continues to be one of the top listed
- Significant increased interest in DED
 - Slightly more interest in wire fed DED (19) compared to powder fed (15), but close

Possible Trend to Large Scale Manufacturing and Integration of Systems??

AMME-WG Planned Activities

Activity 2.6: Not started

Preliminary, survey still open

GEN IV International Forum

Activities 2.1 and 2.2: Current Nuclear Industry Qualification Efforts

- Survey distributed among AMME WG members for contacting the industry partners in their countries
 - 81 Questions
 - 16 respondents from R&D private organizations, suppliers, reactor designers and regulator
- AMME WG will continue working on the Survey

Willingness to share informaiton

https://forms.office.com/Pages/ResponsePage.aspx?id=u3X7Q4OqA06CKuK1LZiI QMCFfD3y8vBIntxdgbOwUg9UM1k3QIBMSUNPTkJKODg3VjA0N1NXNzBQMy4u

• Willingness and readiness for working together but with some caveat.....

Preliminary, survey still open

GEN IV International Forum

Activities 2.1 and 2.2: Current Nuclear Industry Qualification Efforts

Material testing technique

- Broad range of integrated activities
- Standard tests dominate

Activity 2.3: Additive Manufacturing Industry Perspective Panel Session

An Industry Perspective: Current Innovation and Opportunities for Additive Manufacturing for Energy Systems March 25, 2025; 8 am; Room 301, MGM Grand

Subhashish Meher Pacific Northwest National Laboratory Material Scientist

David Furrer Pratt & Whitney Principal Fello

Scott Rose Boeing Research and Technology Mechanical Engineer

TMS 2025 Panelists

J. Ben Schaeffer Lincoln Electric's Additive Solutions Development Enginee

Andrew Storer Enrico Virgillito Nuclear Collaboration Ltd (NucCol) Nuclear Industry Association R&D Program Manage

newcleo

This panel will simulate mutual responsiveness between industries, stakeholders, academia and national laboratories about the current needs and future impacts of additive manufacturing innovations on energy applications. The discussion will create a dialogue with the potential to integrate differing values and understandings for technological advances through the full product system's lifecycle. Specific focus areas include process modeling and control, materials processes and machines, qualification and testing, as well as energy and sustainability. Challenges in supply chain and logistics are also discussed to identify possible similarity in needs between different energy applications.

Panel Discussion Questionnaire Topics

- Introduction and panelists' role in Additive Manufacturing
- Technological Advancements
- Industrial Adoption and Economic Impact
- Sustainability and Environmental Impact

Providing Industry Solutions

AMME-WG M&S Task Group: Planned Activities

19

Activity 3.3: In progress

Activity 3.2: Completed

AMME-WG Task 3: Excel-Based Database of AM Codes

Query: Which codes can model certain Processes and provide certain Outputs?

1	Software Tool 🚽	References	Link	Process	Use	🖬 Simulation Me	thod 🖃 Availability 🛐		
45	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Direct Energy Deposition	Thermal history	Phase field	Open Source Software	Process 🚝	X
46	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Direct Energy Deposition	Thermal history		Open Source Software		
47	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Direct Energy Deposition	Microstructural Pred	Apply Process	Open Source Software	Direct Energy Deposition	
48	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Direct Energy Deposition	Microstructural Pred		Open Source Software	Electron Beam Welding	
49	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Powder Bed Fusion	Thermal history	Filter	Open Source Software	Estables Waldless	
50	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Powder Bed Fusion	Thermal history	· inter	Open Source Software	Friction welding	
51	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Powder Bed Fusion	Microstructural Pred	liction Phase field	Open Source Souware	Powder Bed Fusion	
52	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Powder Bed Fusion	Microstructural Pred	liction Transient Heat Transfer	Open Source Software	Sintering	
53	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Electron Beam Welding	Thermal history	Phase field	Open Source Software	omening	$= \square$
54	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Electron Beam Welding	Thermal history	Transient Heat Transfer	Open Source Software	Fused Deposition	
55	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Electron Beam Welding	Microstructural Pred	liction Phase field	Open Source Software		
56	MOOSE	inomaa, T., Yashchuk, I., Lindroos, M.,	https://mooseframework.org/	Electron Beam Welding	Microstructural Pred	liction Transient Heat Transfer	Open Source Software		
63	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Powder Bed Fusion	Microstructural Pred	liction Phase field	Commercial		
64	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Powder Bed Fusion	Microstructural Pred	liction Phase field	Open Source Software	Use	∛E \¥
65	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Powder Bed Fusion	Microstructural Pred	liction Solid Mechnics	Commercial	Distortion	
66	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Powder Bed Fusion	Microstructural Pre		Open Source Software		
71	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Direct Energy Deposition	Microstructural Pre	Apply Use	Commercial	Microstructural Prediction	n
72	OpenPhase Studio	iu, D. and Wang, Y.,2017 http://openphase-solutions.com/		Direct Energy Deposition	Microstructural Pre	Open Source Software	Molten Pool		
73	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Direct Energy Deposition	Microstructural Pre	Filter	Commercial	D 11	
74	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Direct Energy Deposition	Microstructural Pre		Open Source Software	Porosity	
79	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Electron Beam Welding	Microstructural Pred	liction Phase field	Commercial	Residual stress	
80	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Electron Beam Welding	Microstructural Pred	liction Phase field	Open Source Software	Thormal history	
81	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Electron Beam Welding	Microstructural Pred	liction Solid Mechnics	Commercial	mermathistory	
82	OpenPhase Studio	iu, D. and Wang, Y.,2017	http://openphase-solutions.com/	Electron Beam Welding	Microstructural Pred	liction Solid Mechnics	Open Source Software		
83	PRISMS	agesen, L.K., Adams, J.F., Allison, J.E.,	http://www.prisms-center.org/	Powder Bed Fusion	Μ		Open Source Software		
84	PRISMS	agesen, L.K., Adams, J.F., Allison, J.E	http://www.prism/-center.org/	Powder Bed Fusion	M Au	tomatically	Open Source Software		
91									
92					Determ	nine Availability			V- 0
93			\sim			O 11		Availability	∛= \X
95	95			Options			Commercial		
96	96 97 97 98 98 99 91 92 93 94 95 96 97 98 99 98 99 91 92 93 94 <td></td> <td></td> <td></td> <td></td> <td>Open Source Software</td> <td></td>							Open Source Software	
97								Limited	
90								Proprietary	
100									
		A	ccess More Info	i	i	i		20	
xpe	ertise Collaboi	ration Excellence							

Expertise | Collaboration | Excellence

NEA Workshop on Regulatory Frameworks and Technical Approaches for Qualification and Through-Life Performance of Materials in Advanced Reactors: June 3-5, 2025, U.S. Nuclear Regulatory Commission's Headquarters in Rockville, MD.

Title: A case study assessment of qualification acceleration informed by physics-based modelling

Authors: Lucian Ivan (CNL), Mark Messner (ANL), Daniel Yoon (PNNL), Taylor Mason (PNNL), Karl-Fredrik Nilsson (JRC), Celine CABET (CEA), Isabella J van Rooyen (PNNL)

Qualifying new advanced manufacturing technologies (AMTs) for use with nuclear design codes can be a long and complex process, thereby hindering their wider adoption. The Generation IV International Forum (GIF) Advanced Manufacturing Materials Engineering Working Group (AMME-WG) has engaged in several collaborative initiatives to support the nuclear industry in decreasing time to deployment of Gen-IV advanced reactors. A particular effort is to investigate how modelling and simulation (M&S) approaches could help accelerate the material and process qualification for industrial applications using AMTs. Through advancements in M&S methodologies, industrial users of AMTs could develop and produce critical information that could lead to the adoption of the technology as an essential and integral part in the qualification process. However, open questions remain about the requirements in terms of modelling capabilities and computational cost for a cost-effective M&S approach to ensure accurate builds and repeatable components.

To facilitate the wider adoption of such M&S techniques in the nuclear industry, the goal of the WG is to identify and maintain an inventory of current state-of-the-art computational methods and codes that are instrumental in informing and assessing the properties (e.g., microstructure) of the materials and the components resulting from AMTs. To this end, the WG has started the development of a database of available M&S methods and software packages that have already been applied to AMT and could support the qualification of advanced manufactured materials and processes of interest to nuclear systems. The codes consider physics-based, data-driven, and hybrid approaches which vary in modelling and computational complexity. By filtering the information in the database, an industrial user would be able to identify suitable M&S tools that could assist in the qualification of AMT. To assess the feasibility of the approach and establish modelling requirements, this work considers a case study in which predictions obtained with several selected codes in the database are evaluated against experimental testing data for a geometry-agnostic component made of 316 stainless steels. The talk will present the outcome of the assessment and discuss some of the challenges in applying M&S methods for performance testing related to the qualification of AMT applications]

Expertise | Collaboration | Excellence

AMME-WG Planned Activities

Activities 4.1; 4.4 and 4.5: In progress

Task 4.1: Expanded Elbow Geometry Benchmark Design

Gen IV International Forum Geometry Benchmark– Highlights

GIF Education and Training Series Webinar #100 – Advanced Manufacturing Supporting Gen IV Reactor Systems April 15, 2025

? B TBD

С

? B TBD

* Stand alone benchmark to be developed

N/A

C

? B TBD

B: Separately Standard Size fabricated Sample

C

? B TBD

A ? X TBD

C ? X TBD

? X TBD

X: PNNL planned or completed

Δ

С

? B TBD

С

? B TBD

C: Full actual part

Creep and/or Creep - Fatigue

A: Small sample from actual part

Environmental Testing

 $RT \rightarrow 800^{\circ}C$ NDF*

Additive Manufacturing – Overview of Framatome's Application Perspective

Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless Framatome has provided its prior and written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided.

Legal and disciplinary actions may be taken against any infringer and/or any person breaching the aforementioned obligations.

GIF Education and Training Series Webinar #100 – Advanced Manufacturing Supporting Gen IV Reactor Systems April 15, 2025

framatome

Where Does Additive Manufacturing Fit in Comparison with Other Manufacturing Processes ?

• AM brings strong advantages for complex components and tends to extend its impact as a serial production technology

framatome

Additive Manufacturing – Overview of Framatome's Application Perspective– April 10 2025 © Framatome - All rights reserved

Overview of Metallic Additive Manufacturing – Various Processes

framatome

Additive Manufacturing - Overview of Framatome's Application Perspective- April 10 2025 © Framatome - All rights reserved

Several Processes to Address Different Component Size and Complexities – Each Process with its Advantages

framatome

Additive Manufacturing – Overview of Framatome's Application Perspective– April 10 2025 © Framatome - All rights reserved

Laser Power Bed Fusion Main Interest for Framatome Regarding Nuclear Fuel Components

framatome

Additive Manufacturing – Overview of Framatome's Application Perspective– April 10 2025 © Framatome - All rights reserved

GEN IV International Forum

Preliminary, survey still open

Joining and Welding Techniques

- Electron Beam Welding (EBW)
- Friction Stir Welding
- HIP Joining
- Laser Welding

Friction stir @ PNNL

GEN IV International Forum EBW for high integrity components

Autogenous welding method (no welding wire)
Typically, square butt joints / lap joints
Reduced heat input (reduced distortion)
Keyhole welding process (thick sections in a single pass)

 GMAW, 15 layers 150 mm thick
 NG GTAW, 78 layers 180 mm thick
 EBW, 1 pass 150 mm thick

 Image: Comparison of the second second

Review of Advanced Manufacturing Techniques and Qualification Processes for Light Water Reactors – Electron Beam Welding (ORNL) https://www.nrc.gov/docs/ML2214/ML22143A928.pdf

Presentative model of NuScale Power Reactor Pressure Vessel Copyright NuScale Power. US DOE Project: DE-NE0008629

Deployment of Heavy Section Electron Beam Welding (EBW) Technologies

https://www.epri.com/research/products/3002027860 Review of Advanced Manufacturing Techniques and Qualification Processes for Light Water Reactors – Electron Beam Welding

https://www.nrc.gov/docs/ML2214/ML22143A928.pdf Nondestructive Evaluation of Electron Beam Welds https://www.nrc.gov/docs/ML2432/ML24327A005.pdf

Challenges for deployment of EBW for high integrity components

- Elimination of preheat for welding of vessel steels (ASME)
- Slope-out method for circumferential welds
- Repair methods
- Non-destructive evaluation of welds
- Surface preparation methods (demagnetization methods)

31

Friction Stir Welding

Advantages:

- Mechanical properties are overmatched (full structural repair)
- Fully repairs physical defects (cracks, pitting) and microstructural damage (sensitization)
- Green Process (no harmful fumes generated, low energy consumption)
- Weld or repairs can be done in a single pass
- Fully automated, Temperature controlled FSP
- **FSP** has the potential to process various microstructures, improved corrosion resistance

Bi-metallic pipe for offshore Oil & Gas applications

Repair of Tooling

Friction Stir Processed

- Harmful HAZ
- Reduced properties
 and performance

No harm to base metal
Improved properties

Creep Rupture Testing of Friction Stir Welds

First observation: Welds fail in the heat affected zone in a similar way to fusion welds

Gr91 Friction Stir Welds vs Fusion Welds in cross weld tensional creep at 625C

- FSW weld in Gr91 shows ~3X improvement in creep life over PWHTed fusion weld
- Design knockdown in strength is 32% for SMAW with PWHT (WSRF 0.68) vs. 18% for FSW (WSRF 0.82)

Convergent PM-HIP Manufacturing for Multi-material Structure of Reactor Pressure Vessel

PI: Xiaoyuan Lou, Purdue University

Graded Joining by HIP

Direct and Transitional Joining of dissimilar metal by HIP

Nuclear Qualification for Laser Additive Manufacturing PI: Xiaoyuan Lou, Purdue University

Environmental Cracking of AM 316L Stainless Steel

Comparable crack growth rate to cold worked wrought 316L in high temperature water

High-temperature treatment is necessary to reduce crack growth rate

Irradiation Assisted Stress Corrosion **Cracking of AM 316L Stainless Steel**

IASCC Susceptibility of Different Material Conditions

Unique Cracking Mode

High Temperature Creep Behavior of AM 316H Stainless Steel

Strong Dependency on Laser Parameters

DED 316H falls within the scatter bound and LPBF 316H is slightly below.

Large Scale Manufacturing

- Electric Field Assisted Sintering (EFAS)
- HIP
- Wire DED
- Solid State Manufacturing: Friction Stir Additive / Layer Deposition

DCS-800: Large format EFAS system

- 800 ton press
- 150 kA
- Chamber:
 - 64 ft³
 - 24" Ø rams
 - Sample size:8" to 24" Ø

IDAHO NATIONAL LABORATORY

Large-scale Component Manufacturing

(Soumya Nag, et al. ORNL)

- Feasibility demonstration of additive and hybrid manufacturing of large-scale nuclear components (e.g. vessel, valves).
- Smart Manufacturing: incorporate *in-situ* monitoring data into component qualification and certification.

Test Case 1: HIP Valve Geometry

- State: Post HIP-ed; AM Platform: Hybrid AM
- Material for AM can: 316L SS;
- Material for PM: 316L SS
- Time to Print/Machine: 20 hr/25 hr
- Weight: 25lbs; Volume: 53 in³

Actual AM Build

Digital Image Correlation (DIC)

IR camera

Test Case 2: Impeller Prototype

- State: As Built; AM Platform: WAAM/MedUsa
- Material for AM can: 410 Ni Mo SS;
- Material for PM: TBD
- Time to print: 46 hr @ 20lb/hr
- Weight: 900lbs; Volume: 6889 in³ (5ft dia, 25" ht)

GEN IV International Forum

Friction Stir Additive Manufacturing

- Application of high shear strain during metals synthesis or fabrication, to produce high-performance microstructures in alloys, semi-finished products and engineered assemblies, without bulk melting the constitutive materials.
 - can facilitate diffusional processes and phase transformations, offering the potential of a scalable route to the production of metastable, or far-from-equilibrium materials

MELD

• Additive Solid Phase Manufacturing is focused on three solid phase deposition technologies:

Consumable material t t Substrate

NiCoFeCrCu_{0.12} and Al10Cr₁₂Fe₃₅Mn₂₃Ni₂₀ High Entropy Alloys: **FSLD Microstructure**

GEN(IV International Forum

500 µm

Towards the bottom (near substrate): Grain refinement is observed possibly due to formation of oxides and presumably the higher cooling rate.

- Offers a Bulk Manufacturing process for HEA ٠
- Significant grain refinement in FSLD process compared to that in ٠ as-cast and solutionized sample.
- End Pieces needs optimization ٠

Solid-stir Additive friction stir deposition of 316SS with improved radiation tolerance

Profile Forming Processes

- ShAPE[™] for nuclear energy applications (e.g., fuel cladding, heat exchanger tubing)
- ODS Cladding Tubes New Manufacturing Processes ٠
 - Concept of Manufacturing ODS tube via Cold Spray Process
 - Direct Tube Manufacturing using ShAPE[™]
 - \checkmark Produce bar then pilger process
 - Direct tube manufacturing from powder or solid
 - LPBF & DED with subsequent thermal mechanical processing (not discussed today)

Shear Assisted Processing and Extrusion (ShAPE[™])

Developed at PNNL, ShAPE[™] is a unique method for consolidating/extruding materials, in which linear and rotational shear are combined to plasticize.

Benefits include:

- Grain refinement
- Texture alignment
- Breakdown of 2nd phases
- Mixing and homogenization
- Single step process
- Lower force and energy

International

Forum

Input: Tool rotational speed Die advance rate Extrusion ratio

Expertise | Collaboration | Excellence

Output: Temperature Torque/power Forces (X, Y, and Z)

A rotating die is pushed into the billet material resulting in the fabrication of an extrudate between the mandrel and the die orifice or landing.

Pacific Northwest

GEN IV International Forum

ShAPE Profiles (Hollow Core)

RoundSquareAsymmetricMulti-CellImage: SquareImage: Square<

S. Whalen, B.S. Taysom, N. Overman, Md. Reza-E-Rabby, Y. Qiao, T. Richter, T. Skszek, M. DiCiano, "Porthole Die Extrusion of Aluminum 6063 Industrial Scrap by Shear Assisted Processing and Extrusion," Manufacturing Letters, 36, pg. 52-56, 2023.

Bar

ShAPE Profiles (Solid Core) Wire Rod

Zircaloy-4 tubing and Co-extrusion

Conventional Manufacturing of ODS Steel Tubes – Slow and Costly Process

- Ball-milled powders canned and subjected to multiple hot extrusion and annealing steps (8 -10 steps).
- Not conducive to large-scale manufacturing

Cladding tube treatment At final heat treatment

At intermediate heat Cold rolling

(pilger mill)

Hot extrusion (1423 K)

G. Odette et al, Annu. Rev. Mater Res., 2008

Concept of Manufacturing ODS tube via Cold Spray Process

Patent No. 1598008, 2023.

Potential Benefits:

- Eliminates multiple extrusion steps
- Faster and cheaper manufacturing process

Powder Engineering to Achieve Right Particle Microstructure and Size/Hardness for Cold Spray

Powder size reduction (Cryogenic milling)

 Hardness reduction (Heat treatment)

Hardness reduction by heat treatment

"Cold Spray Manufacturing of Oxide-dispersion Strengthened (ODS) Steels using Gas-atomized and Ball-milled 14YWT Powders", H. Yeom, D. Hoelzer, S. Maloy, and K. Sridharan, Journal of Nuclear Materials, v. 174, 2023 154187

TEM of Cold Spray Deposits using Engineered Powders

Low mag. BF

High mag. BF

Fine grain structure (<500 nm) Fine nanoparticles(<20 nm)

Near-net shape, freestanding ODS steel tube with right microstructure manufactured by cold spray

"Cold Spray Manufacturing of Oxide-dispersion Strengthened (ODS) Steels using Gas-atomized and Ball-milled 14YWT Powders", H. Yeom, D. Hoelzer, S. Maloy, and K. Sridharan, Journal of Nuclear Materials, v. 174, 2023 154187

Consolidation and extrusion of GARS ODS powder with ShAPE platform

- Robust friction consolidation of GARS powder (< 1 min)
- In-situ formation of Y-Ti-O nano-oxide particles (2.3×10²²/m³)
- "Stratum" to study Y/Ti/O evolution with increasing deformation

- Friction extrusion following consolidation
- Crack-free, fully-dense ODS steel rod
- Preliminary results suggest presence of high-density, nano-sized particles

Pacific Northwest

Zhang et al., Journal of Nuclear Materials, 2022 https://www.sciencedirect.com/science/article/pii/S0 022311522002550?via%3Dihub

Cold Spray Processing for Nuclear Energy Applications

• Full Lifecycle application for nuclear energy applications

Cold Spray: Process Details

- Extreme plastic deformation when particle impacts substrate:
 - produces a highly refined grain structure.
 - energy of a single particle deformation is so low and happens so quickly that detrimental heat-affected zones are avoided.
- As particles are deposited, mixtures of areas of extreme to low plastic deformation develop.
- Solid-phase process
 - No heat affected zone (HAZ)
 - No tensile residual stresses
- Does no harm to surrounding material

Grain structure of atomized particles prior to and immediately after impact -courtesy of VRC Metal Systems

Video: Simulation of particle deformation during high-velocity cold spray -courtesy of VRC Metal Systems

Applications for Cold Spray

- Research & Development:
 - Rapid screening of new alloys
- New design
 - Induces compressive residual stresses: fatigue performance
 - Wear resistance
 - Corrosion barrier for MSR
 - Environmental barrier
 - Cost competitiveness: Improved economics
- Operations next generation reactors
 - Improved performance and economics
 - Life extension/Lifecycle
 - In-situ repair
 - Magnetostrictive condition monitoring at high temperatures
- Life extension of existing fleet

- Over the past 50 years, several failure modes for nuclear plant components have been detected
 - Acid and caustic cracking
 - Fatigue (the primary mechanism addressed in ASME Code)
 - Hydriding and oxidizing fuel rods
 - Crevice corrosion
 - Pitting corrosion
 - Flow assisted corrosion (FAC) and cavitation
 - Mechanical wear
- Several base materials have been affected
 - Carbon steel (pressure vessels and piping)
 - Stainless steel (piping and storage tanks)
 - Ni based alloys (inconel welds and base metal)
 - Zirconium based materials (fuel rods and assembly structures)

Fielded cold spray repair

Collaboration: Constellation, VRC and PNNL

• December 2020 Plant Authorized Cold Spray Mitigation of:

1st 24" **Salt Water Check Valve Body** (AL6XN) Cold Sprayed (Spare, 1 of 7)

1st 18" **Salt Water Flow Element Flanges** (316 SS) Cold Sprayed (Spare, 1 of 9)

- Check valve installed in 2021,
- Flow Element installed in 2022
- 2nd 24" Salt Water Check Valve Body (AL6XN) Cold Sprayed on 5/18/2022

Westinghouse LWR fuel cladding

- Cold sprayed Chromium on Optimized ZIRLO
- Irradiation testing Byron Unit 2 Cycle 22
- Improved
 - Economics
 - Safety
 - Reliability

(a) As-fabricated microstructure of cold spray chromium coating on Optimized ZIRLO cladding, (b) Microstructure of cladding tube following oxidation in steam at 1200°C for 20 minutes.

https://www.euronuclear.org/archiv/topfuel2018/fullpapers/TopFuel2018-A0145fullpaper.pdf

New Techniques or Applications

- Iterative Cold Spray and Friction Stir Processing
- Advanced Fuels for GENIV systems
- Advanced Manufacturing Impact on Critical Minerals (CM) for Nuclear Materials
- Mining engineering
- Digital Casting Molds
- Printed Batteries and Energy Storage Applications

Hybrid Processes: Iterative Cold Spray and Friction Stir Processing (FSP) for Fe-ODS plate

- Successful manufacturing of ODS plates without the need of ball milling feedstock powder and conventional hot rolling
- Generated ODS precursor via Gas Atomization Reaction Synthesis (GARS)
- Cost affective at scale
- Oxide particle density 2.8*10²²/m³, with average size ~5 nm diameter
- 1.7µm average grain size

Combination of cold spray and friction stir processing

Uniform and fully-dense structure

2 mm

GEN

Expertise | Collaboration | Excellence

Substrate HPCS+ 316L 316H

IPF-Z

250 µm

Iterative Cold Spray and FSP of 316H Stainless Steel

Early research

Homogeneous ultrafine grain structure in FSP processed region

111

Anticipate improved mechanical properties and corrosion resistance compared to base metal

(d)

(g)

Advanced Fuels for Gen-IV

- Ceramic Fuels (pressureless sintering)
 - HALEU UO₂
 - HALEU UN and UC
 - Arc melting technique
 - Hydride/Dehydride/Nitride technique* CTR technique
 - U₃Si₂, Westinghouse's Encore program
 - UO₂-UB₂ (90/10 wt%) composites**
- Metallic fuels
 - U-alloys
- Equipment
 - High temp furnace (2000C)
 - 25 ton EFAS
 - Casting
 - Extrusion and machining
- Researching the use of novel fuel and cladding forms

Novel fuel and cladding concept. Rendering and X-Radiograph of UO₂ Vibropac in Cladding Lattice, TREAT Test Specimen (Josh Zelina – MFC) {INL LDRD}

Sintered UN pellet. A) Optical image, B) EBSD inverse pole map

HALEU UO₂ (15% ²³⁵U) pellets fabricated to commercial standards Sintered U₃Si₂ Pellets ~0.5 kg

* BJ Jaques *et al.*, Synthesis and Sintering of UN-UO₂ fuel Composites, J. Nuc. Mater., **466**, 745-754, (2015)

JK Watkins et al., Enhancing Thermal Conductivity of UO₂ with the Addition of UB₂ via Conventional Sintering Techniques, J. Nuc. Mater. **559, 153421, (2022)

GIF Education and Training Series Webinar #100 – Advanced Manufacturing Supporting Gen IV Reactor Systems April 15, 2025

IDAHO NATIONAL LABORATORY

Advanced Manufacturing Impact on Critical Minerals (CM) for Nuclear Materials

Pacific Northwest

NATIONAL LABORATOR

Expertise | Collaboration | Excellence

Friction Stir Consolidation (FSC) a Means to Save Critical Minerals by Waste Minimization

A709

617

Ore to More – Direct Digital Metal Fabrication

.....

Powder Metal 3D Printing Digital in situ alloying Multi-material Inconel, Copper, Steel High resolution **Only Blue Laser DMG in USA**

Wire Metal 3D Printing Co-axial wire Safety enhanced **Economical** High production rate

Crucial national supply chain for rare Earth minerals

Digital Casting - 3D Printed Smart Sand Molds

3D Printed Sand

3D Printed Sand Mold

Traditional Casting with Automation Youngstown State – Collaborator Brian Vuksanovich

Complex Castings

UTEP is #1 in Publications Worldwide in Digital Casting with Sensing

3D Printed Batteries and Energy Storage

Two Fulbrighters from France/Mexico Ana Martinez, PhD. Alexis Maurel, PhD

1.0

0.8

-0.6

0.4 0.2

National

GIF Education and Training Series Webinar #100 – Advanced Manufacturing Supporting Gen IV Reactor Systems April 15, 2025

UTEP is #1 in Publications Worldwide in 3D Printed Batteries

IAEA ISOP award

International Network on Innovation to Support Operating Nuclear Power Plants

ISOP Award 2024 – Advanced Manufacturing

Figure 1. Transition of additive manufactured wireless valve position indication sensor system across the technology readiness level.

Vivek Agarwal (Idaho National Laboratory - USA) received the award on behalf of INL Team

Customized adjustable brackets (covered under the U.S. Patent # US 11,698,145 B2. July 11, 2023) were developed to support the Valve Position Indicator sensors. The brackets are printed using additive manufacturing techniques and can be either bolted to the valves themselves or to the valve-support structure without requiring any major change to the valve itself and without impacting valve integrity or qualification. The printed backets are lightweight and tested for seismic and other structural requirements.

YouTube: Intelligent Plant Configuration Management using Wireless Sensors

2

Preliminary, survey still open

Non-Destructive Examination

What is meant by Life Cycle NDE?

- Incorporation of NDE principles throughout the life cycle of a component
- Confirmation that a component will meet performance requirements until EOL

NDE Gaps for Advanced Manufactured Components

Challenges to NDE of AM Components

- Surface roughness
- Anisotropic microstructure and mechanical behavior
- Geometric complexities
- Inspection regions (weld vs. entire part, volumetric vs. surface, etc.)
- Unique imperfections/defect structures
- Critical flaw size
- Lack of experience with new in-service defect formation and degradation modes.

Ultrasonic Velocity Measurements

Resonance Ultrasound Spectroscopy (RUS) System

Reflected Ultrasonic Amplitude Spectrum Analysis (RUASA)

Scanning Acoustic Microscope Analysis

Further reading/resources

Jacob, R., et al. 2020, Survey of Pre-Service and In-Service Nondestructive Evaluation Techniques of AMT-Fabricated Components, PNNL-30759, United States Nuclear Regulatory Commission TLR-RES/DE/CIB-2020-12, ML20349A012.

America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), (2023) Standardization Roadmap for Additive Manufacturing, Version 3.0, July 2023.

Learn more and register at: www.pnnl.gov/events

Mechanical Properties of AM Materials by NDE Assessment

- Leverage relationship between unique ultrasonic properties of materials and physical characteristics to:
 - Verify materials properties (Bulk Modulus, Elastic modulus, Poisson's Ratio, Hardness...)
 - Microstructure analysis (grain size, porosity, etc..)
 - Detect material defects (lack of fusion/bonding, cracks, etc.)
 - Assess component features of interest (e.g. geometry)
- Elastic mechanical properties using
 - Ultrasonic velocity measurements
 - Resonant Ultrasound Spectroscopy (RUS)
- Observe influence of fabrication
 - Anisotropic behavior in shear velocities in LPBF coupons
 - Porosity in DED 316L influences mechanical properties

Acoustic Microscope Scan Images Showing the Porosity/Defects in the INL-DED-1 coupon

Elastic Mechanical Properties for INL-DED-1 Calculated from the Ultrasonic Velocity Measurements

Sample	Young's Modulus (GPa)	Shear Modulus (GPa)	Bulk Modulus (GPa)	Poisson's Ratio ()
INL-DED-1-T	194.7	74.81	163.3	0.301
INL-DED-1-W	185.1	70.31	169.7	0.318
INL-DED-1-L	155.8	65.76	82.4	0.185

Young's Modulus for Grade 92 LPBF Coupons

Elastic Constants from RUS Analysis and Mechanical Properties Computed Using Isotropic Material Relationship

Parameter	INL-DED-1	INL-DED-2	Wrought 316L
C11 (GPa)	242.3	203.7	247.8
C12 (GPa)	90.6	45.9	94.3
C44 (GPa)	74.1	73.2	76.7
Bulk M (K) (GPa)	141.2	98.5	145.5
Shear M (G) (GPa)	74.1	73.2	76.7
Youngs M (E) (GPa)	189.2	176.0	195.7
Poisson Ratio ()	0.277	0.202	0.276
Density (g/cm ³)	7.886	7.653	8.0 ¹

¹ – Nominal material density for SS316L

69

Supply Chain Challenges and Opportunities

• Supply chain challenges present through the full life cycle products

EPRI Advanced Energy Systems Supply Chain Workshops

- Inaugural Annual Workshop in Dallas, TX: June, 2022
 - 70 attendees from 48 organizations

First Workshop Summary Doc link: 3002025254

- 2nd Annual EPRI AES Supply Chain Workshop; April 12-13, 2023, in Dallas, TX
 - 97 Attendees: 66 Organizations, 45 speakers/panelists, 1.5 days

2nd Workshop Summary Doc: <u>3002027773</u>

- 3rd Annual EPRI AES Supply Chain Workshop, April 10-11, 2024, in Dallas, TX
- 4th Annual EPRI Supply Chain Workshop for Structural Components in Advanced Energy Systems, September 23-25, 2025 in Pacific Northwest National Laboratory, Richland
 - Co-located with DOE-NE Advanced Materials & Manufacturing Technologies (AMMT) Program's:

First Workshop – Key Takeaways Challenges and Opportunities Abound

High temperature material availability and new material qualification

De-risking FOAK components and projects

Forging size and throughput (& machining) inadequate to handle potential demand

o Lo Maximize factory fabrication and modularity

Engagement of supplier early in design

Supply Chain for nuclear components needs to be expanded

Capital investments hindered without clear market

Design for manufacturability

Commercialization of advanced manufacturing

Test beds for demonstration and qualification

Collaboration & cooperation between competitors

Section III TG on Advanced Manufacturing for Div.5

No formal Record Numbers or ballots to date,

however various efforts collecting technical data for *elevated temperature service*

Section III Division 5 design parameters present unique challenges with respect to qualification

LPBF – 316H

- DOE AMMT Program executing test campaign to qualify 316H LPBF in Div. 5
- <u>https://publications.anl.gov/anlpubs/2023/08/</u>
 <u>184225.pdf</u>

DED-AM (GMA-AM)

- EPRI presented AM-SRF (Additive Manufacturing Strength Reduction Factor) Approach
- EPRI collecting technical data and executing test programs on 316H and Gr91 (also in support of EPRI led Section I code case)

Powder Metallurgy HIP

- Ongoing research focused on time-dependent properties of 316, 709, 625, and others.
- Note Grade 91 is approved in *Section I Only* via Code Case 2770)

EPCI

ASME B&PV Progress* on Advanced Manufacturing

	Powder Metallurgy Hot Isostatic Pressing (PM-HIP)	Wire-Based Directed Energy Deposition (DED)	LB/EB-PBF
Governing Specs / Standards	ASTM defines mat. specs	Section IX QW-600	Guideline: ASME PTB- 13-2021
Approval Time- Independent Regime	SA988/988M – Stainless Steel, SA989/989M – Ferritics, SB834/834M – Nickel-based alloys 316L: CC N-834 for Section III and 2023 Edition of ASME Section III	ASME proposed code case for Section I, III, VIII, B31. Record No. 22-1598: material equivalences	ASME proposed code case for Section III (316L Database) Record No. 23-1593
Approval Time- Dependent Regime	Code Case: Material by material approval based on Appendix 5: Grade 91 (CC-2770)	Technical approaches being considered, EPRI proposal for AM-SRF**	US DOE National Labs led Section III project on time-dependent 316
Other notes	SA508 development part of SMR Adv. Manuf. DOE project KIWG focused on XM-19 and 6NM	EPRI projects on Gr. 91 and 316/316H/316L creep behavior	

EPRI-led activities highlighted

*Based on general status for Sections I, III, VIII, and B31.1 **SRF=Strength Reduction Factor

Additive Manufacturing

Advanced Materials and Manufacturing Technologies (AMMT) Program

AMMT website https://ammt.anl.gov

GIF Education and Training Series Webinar #100 – Advanced Manufacturing Supporting Gen IV Reactor Systems April 15, 2025

U.S. DEPARTMENT OF

NUCLEAR ENERGY

Office of

Technical Areas

Advanced Materials & Manufacturing

- Advanced Metallic Materials
- Advanced Manufacturing Technologies
- Traditional Manufacturing & System Integration

Rapid Qualification

- Rapid Qualification
 Framework
- High-temperature Materials Qualification
- Advanced Manufacturing
 Qualification

Environmental Effects

- Neutron Irradiation & Postirradiation Examination
- Accelerated Qualification for Radiation Effects
- Corrosion Effects in Nuclear Environments

Technology Maturation

- Component Fabrication & Evaluation
- Codes and Standards
- Regulatory Acceptance & Licensing

Impact: The AMMT program will provide the nuclear industry with next-generation high-performance materials and advanced fabrication methods for expanded supply chains and demonstrate new technologies within the next decade.

Advanced Materials & Manufacturing

Integrated Materials and Manufacturing Development

Develop and optimize materials through composition and processing to achieve high performance.

- Apply advanced manufacturing to existing reactor materials
 - Optimize advanced manufacturing processes to expand the applications of current reactor materials.
- Optimize non-nuclear commercial materials for nuclear applications
 - Optimize materials/processes for enhanced resistance to nuclear environments to enable their nuclear applications.
- Develop innovative new materials
 - Develop new materials enabled by advanced manufacturing (e.g., multi-material, multi-functional designs) or new material design concepts.

Materials of Interest

- Fe-based alloys
- Ni-based alloys
- Refractory alloys
- ODS alloys
- High entropy alloys
- Functionally graded materials
- Cladding/coating materials

Materials Processing for Nuclear Components

Advanced Materials Forming

Advanced Materials Joining/Welding

Hybrid Manufacturing

Integrated materials & manufacturing development

Focus on Qualification:

Qualification of High Temperature Materials for Nuclear Construction

Code qualifying a new material for high temperature nuclear structural design is a lengthy process.

- ASME Section III, Rules for Construction of Nuclear Facility Components -Division 5, High Temperature Reactors.
 - Governs the construction of structural components for use in high temperature reactors including GCR, SFR, LFR, MSR.
 - Specifies the mechanical properties and allowable stresses to be used for design of components in high temperature reactors.
- Only six materials have been approved for elevated-temperature nuclear construction in Section III Division 5.
- Approval of a new material under the Code involves rigorous testing, documentation, and approval processes.
 - Specification, product form, size/thickness, hear treatment, metallurgical structure.
 - Data are generated from at least 3 different "heats" of the material.
 - Exhaustive mechanical property tests (tension, creep, fatigue, creep-fatigue, etc.).
 - For time-dependent properties (e.g. creep), allowed time extrapolation factor, 3-5.
 - Consider long-term properties stability, e.g. structural stability due to thermal aging.

Focus on Qualification:

- ASME Code rules do not provide methods to evaluate deterioration from corrosion, mass transfer phenomena, or radiation effects.
- NRC has issued "Material Compatibility for non-Light Water Reactor Draft Interim Staff Guidance" as part of its evaluation of a non-LWR application to review applicable design requirements including environmental compatibility, qualification and monitoring programs for safety-significant structures, systems, and components (SSCs).
- Demonstrates material performance to satisfy regulatory requirements.

Irradiation Effects

The cost and time required for neutron irradiation and post-irradiation examinations only allow for exploration of a limited set of metallurgical and irradiation conditions. Extrapolation of data beyond testing conditions and prediction of long-term performance is a challenge.

Corrosion Effects

 Comprehensively evaluate the corrosion performance of materials in various reactor coolant environments (e.g. molten salt, sodium, lead, helium) is a challenge.

DANU-ISG-2023-01 Material Compatibility for non-Light Water Reactors Draft Interim Staff Guidance

February 2023

Focus on Qualification:

Qualification of AM Materials for Nuclear Applications

Qualification of AM materials/components for nuclear applications needs a paradigm shift.

- Adding AM materials into ASME Division 5 is critical to the wide adoption of AM technologies in advanced reactors.
- Qualification of materials made by advanced manufacturing (AM) processes (e.g. laser powder bed fusion, directed energy deposition) for nuclear applications presents a new challenge.
- Unlike traditional manufacturing, additive manufacturing creates geometric forms simultaneously with the material.
- Additive manufacturing is a highly-localized process, creating spatial variations in response to differences in geometry and processing conditions.
- Materials properties are related to the component geometries and may vary throughout the component.
- AM plays a crucial role in accelerating material qualification by introducing new challenges that necessitate innovative approaches.

Office of

NUCLEAR ENERGY

Rapid Qualification Framework

A science-based engineering approach: combining scientific understanding with engineering data.

Develop Processing-Structure-Property-Performance based qualification framework

A P-S-P-P based qualification framework requires a fundamental understanding of processing-structure-propertyperformance relationship through experimental and computational approaches.

Use integrated experimental, modeling and data-driven tools

Capitalize on the wealth of digital manufacturing data, integrated computational materials engineering (ICME) and machine learning/artificial intelligence (ML/AI) tools, and accelerated, high-throughput testing and characterization techniques.

Integrate in situ process monitoring and digital data into the qualification process

Monitor and analyze the printing process in real-time to ensure the quality and integrity of the fabricated part. Use *in situ* process monitoring data to detect defects and as a QA tool to assess part quality.

Demonstrate accelerated qualification methods through qualifying LPBF 316H SS

Laser powder bed fusion 316H stainless steel (LPBF 316H SS) serves as a test case for demonstration of a new qualification framework.

Multi-Dimensional Data Correlation (MDDC) Platform

Performance Evaluation under Neutron Irradiation

Ongoing HIFR Irradiation

- 8 capsules were inserted in Cycle 506 (April 2024)
 - Irr. temp.: 400, 600°C
 - Doses: 2, 10 dpa
 - Materials: AM 316H, wrought 316H, wrought 709, AM 316L
 - Specimens: tensile, bend bars
- 12 capsules to be inserted in cycle 507 (June 2024)
- PIE of the 2 dpa capsules will start in July 2024.

 Neutron irradiation experiments at the ATR are being planned (targeting Cycle 175-C, 06/2025).

Irradiation Experiments

- Primarily thermal spectrum
- Pressurized water at ~50°C
- Experiment positions vary between 5/8" to 3" diameter
- Fast flux: 8.1x10¹³ n/cm²/s
- Thermal flux: 2.5x10¹⁴ n/cm²/s

Specimens

• SS-J tensiles, bend bars. round compact tension

A709 Irradiation Planning

- Two work packages have been created to develop a neutron irradiation and PIE plan for A709.
- Funding was provided by the ART Fast Reactor Program.
- INL and ORNL will jointly develop a detailed plan for generating A709 irradiation data in support of advanced reactor license application and its integration with the AMMT current neutron irradiation campaign plan.

Corrosion Effects in Nuclear Environments

AM Materials in LWR Environment (under LWRS)

Technology Maturation

Goal is to advance a technology by increasing its TRL to accelerate the adoption of advanced materials and manufacturing processes in nuclear applications.

Component Fabrication and Evaluation for Technology Demonstration

- Demonstrate the fabrication feasibility of reactor components using new materials or AM technologies.
- Evaluate the component performance in relevant reactor environments.

Codes and Standards

- Introduce new materials and manufacturing methods into ASME Code.
- Incorporate the rapid qualification framework and methods into Codes and Standards development.

Regulatory Acceptance and Licensing

- Establish design and operational limits and guidelines to support advanced reactor licensing applications.
- Develop material surveillance programs to monitor material degradation during service.

Final Remarks

Providing Industry Solutions

No one Recipe for all

- Collaboration and Sharing of Data
- Accelerated Qualification & Qualification Technologies
- Technologies:
 - Dissimilar material joining
 - ✓ low melting temp metals joined to high melt, steel to ceramics or refractories
 - ✓ Cladding/Coating
 - Alloys for extreme environments
 - ✓ made from elements that could not have been alloyed previously due to constraints imposed by melting

Each contribute to a puzzle piece, lets work together for full integration and momentum for acceleration of deployment

Upcoming Webinars

Date	Title	Presenter
14 May 2025	Advanced Nuclear Technologies for Maritime Application	Hussam Khartabil, IAEA Nadezhda Salnikova, OKBM, Russia Kirk Sorensen, Flibe Energy, USA Andreas Vigand Schofield, Seaborg Technologies, Denmark
12 June 2025	Modeling UO ₂ Fission Gas Release (FGR) Thresholds in BISON	Kelly Cunningham, UFL, USA – winner of the ANS 2024 PhD Competition
30 July 2025	Thermal Hydraulics of Supercritical Water Reactor (SCWR)	Prof. Liu Xiaojing, from Shanghai Jiao Tong University of China

