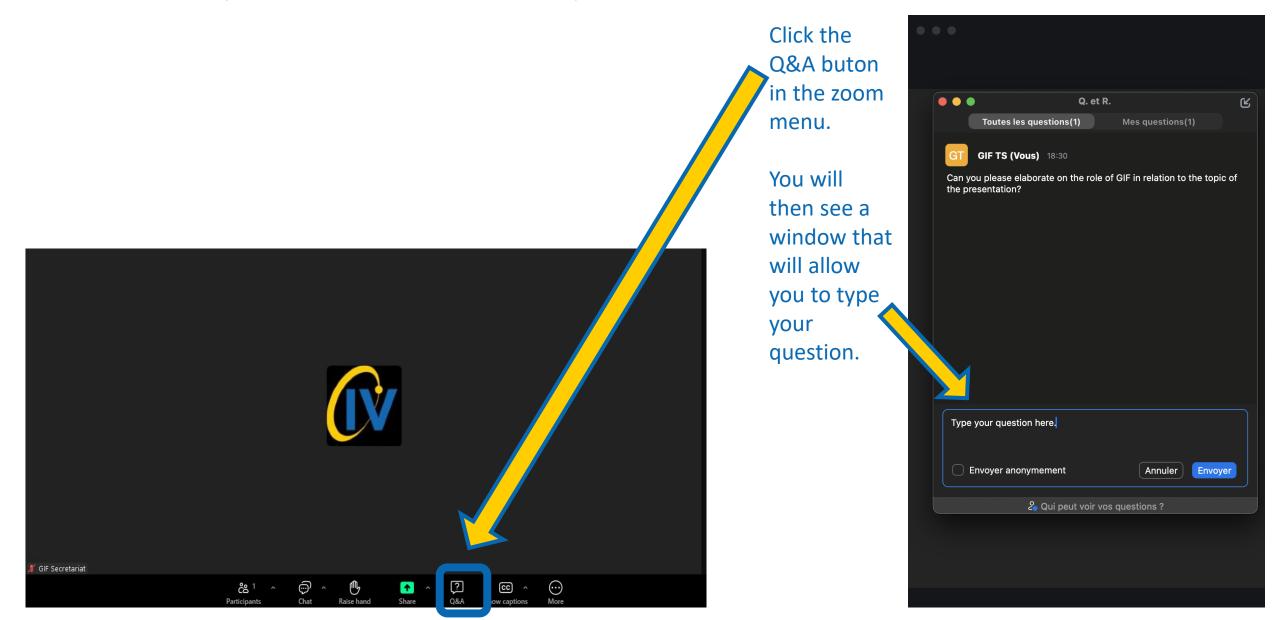


Analysis and Engagement on Non-electric and Cogeneration Applications of Nuclear Energy

Dr. Chukwudi Azih and Mr Brent Wilhelm

28 August 2025



Some Housekeeping Items

	Listen through your computer	Please select the "use computer audio" option and check that your speakers/headphones are not muted.
2	Technical Difficulties	Search the Zoom Webinars Support https://support.zoom.com/hc/en/article?id=zm_kb&sysparm_article=KB0064143
.	To ask a question	Select the "Q&A" pane on your screen and type in your question
	Share with others or watch it again	A video/audio recording of the webinar and the slide deck will be made available at www.gen-4.org
9	Please take the survey	A brief online survey will follow the webinar.

To Ask a Question – Use the Q&A function

Analysis and Engagement on Non-electric and Cogeneration Applications of Nuclear Energy

Dr. Chukwudi Azih and Mr Brent Wilhelm

28 August 2025

Meet the Presenters

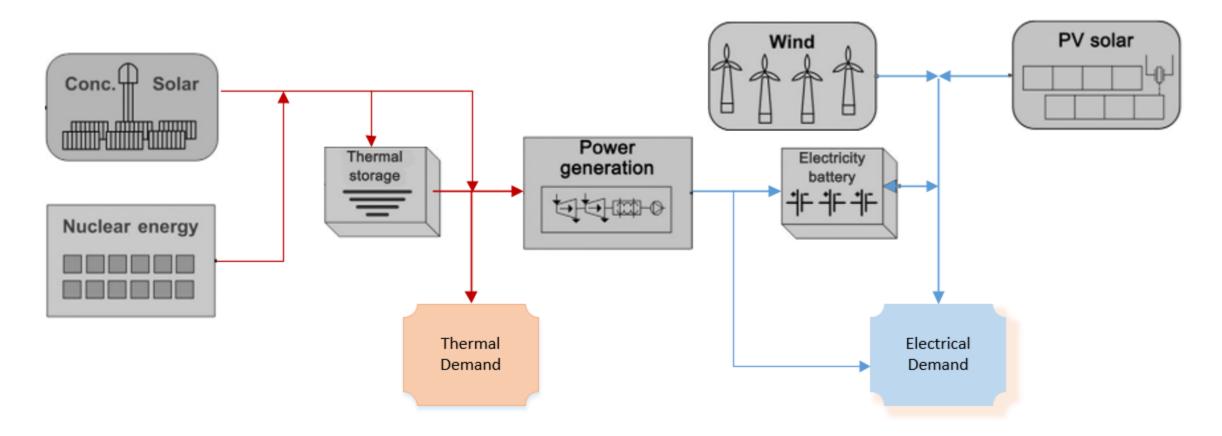
Dr. Chukwudi Azih is a Senior Research Scientist at Canadian Nuclear Laboratories and heads a Section at CNL that performs experimental investigations on high temperature and pressure scenarios in current and advanced nuclear reactors. He serves in a leadership role, from a technical standpoint, in areas of heat removal and utilization from CANDU reactors, GIF fleet of reactor designs, and SMRs. He is a Canadian representative in the Program Management Board for Thermal-Hydraulics and Safety of the GIF System Arrangement and in the Non-Electrical and Co-generation Applications of nuclear heat GIF Working Group. He applies his computational and experimental heat transfer expertise to lead efforts in developing technical understanding and facilities for active and passive heat removal systems for nuclear reactors, and thermal storage applications in integrated energy systems involving nuclear energy technology.

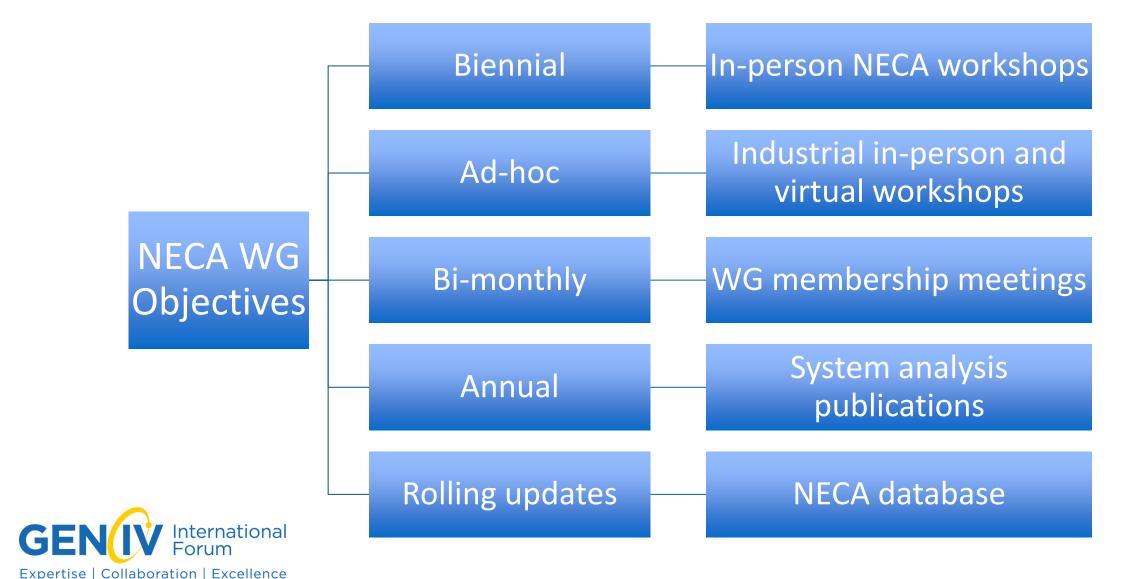
Email: chuk.azih@cnl.ca

Mr Brent Wilhelm is a Nuclear Energy Technology and Economics Analyst at the Nuclear Energy Agency and serves the GIF as Technical Secretary to the Non-Electric and Cogeneration Applications (NECA) Working Group and the VHTR system. Prior to this role, Brent worked for the Government of Canada as a Nuclear Science and Technology Advisor with Natural Resources Canada. Brent received both a MSc and BSc in Physics from the University of Guelph where he specialized in nuclear energy and planetary bulk geochemistry.

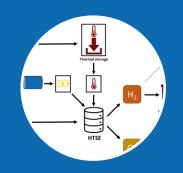
Email: brent.wilhelm@oecd-nea.org

Outline


- Overview of the GIF Non-Electric and Cogeneration Applications (NECA) Working Group (Azih)
- Summary of engagement with industry end users and regulators (Azih)
- Outcomes from "System Analysis: Hydrogen Production from Nuclear Energy" report (Wilhelm)


Non-Electric and Cogeneration Applications (NECA) Working Group Overview

More Than Electricity



NECA WG Objectives

Non-Electric and Cogeneration Applications of Nuclear Energy (NECA) WG

Scope and membership

Conduct system analysis with respect to KPIs

Engaging industrial end-users

Maintain the Non-Electric Applications Public Database

Support regulatory readiness on non-electric applications of nuclear energy systems

Continue international collaboration (IAEA, IEA, NEA, WNA)

Coordinate relevant activities across GIF systems and working groups

History of Non-Electric and Cogeneration Applications of Nuclear Energy

- More than 70 reactors with over 750 reactor-years globally of experience as of 2019
 - Accounts for less than 0.5% of the total nuclear thermal output of over 440 reactors
 - Mostly water-cooled reactors
- District Heating:
 - 43 reactors have been used, ~500 reactor years
 - Average 5% thermal output; range 5 to 240 MWth
 - Typically, <150°C
- Desalination of water
 - 17 reactors have been used, ~250 reactor years
 - Mostly using thermal processes (multi-effect distillation and multi-stage flash), <130°C
- Industrial Process Heat
 - >10 reactors
 - Typically based on medium pressure steam, <250°C

GIF – "Position Paper on Non-Electric Applications of Nuclear Heat", 2022

IAEA - "Opportunities for Cogeneration with Nuclear Energy" NP-T-4.1, 2017

IAEA - "Guidance on Nuclear Energy Cogeneration" NP-T-1.17, 2019 11

NEA – "Beyond Electricity: The Economics of Nuclear Cogeneration", 2022

History: District heating

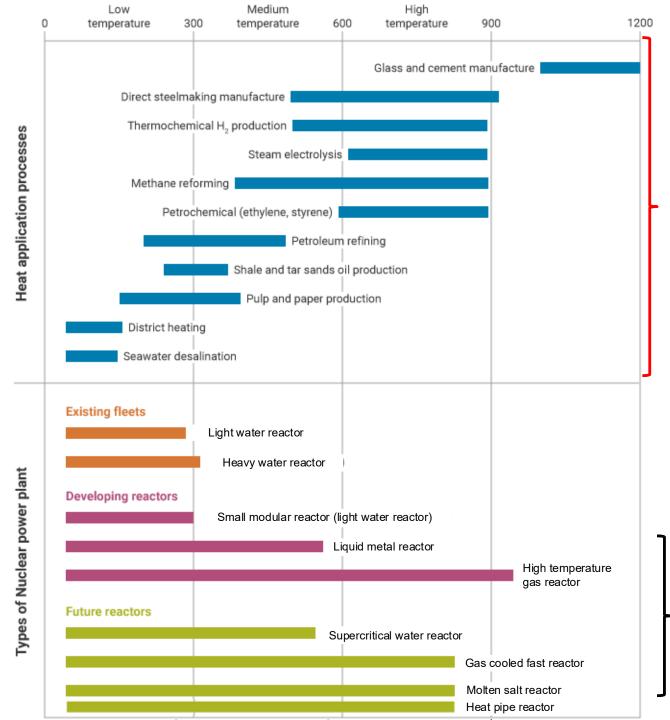
43 reactors have been used, ~500 reactor years: some examples

Country	Plant		Application	Status
China	Haiyang NPP Qinshan NPP	– PWR – PWR	1 million residents (1,200 MW _t) 4 thousand residents	2020 – Operating 2021 – Operating
Czechia	Temelin NPP	– PWR	8 thousand residents	2020 – Operating
Hungary	Paks NPP	– PWR	20 thousand residents (40 MW _t) - 5 km	1982 – Operating
Romania	Cernavoda NPP	– PHWR	18 thousand residents (46 MW _t)	1996 – Operating
Russia	Kola NPP Smolensk NPP KLT-4S Floating	– PWR – RBMK – PWR	232 MW_t - 11 km 30 thousand residents (<520 MW_t) – 5 km 70 MW_t	1973 – Operating 1982 – Operating 2020 – Operating
Switzerland	Beznau NP	– PWR	11 towns (<80 MW _t) – 130 km network	1984 – Operating
Canada	Bruce A NPP	– PHWR	15 MW _t , 6 km	1972 – 2006

History: Desalination

17 reactors have been used, ~250 reactor years: some examples

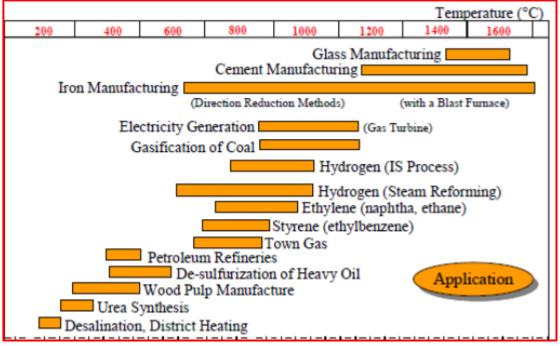
Country	Plant	Application	Status
China	Hongyanhe NPP — PWR Haiyang NPP — PWR Tianwan NPP — PWR	Reverse osmosis (RO) ~10,000 t/day Thermal process/RO Reverse osmosis ~36,000 t/day	2021 – Operating 2021 – Demonstrated 2024 – Operating
India	Kudankulam NPP – PWR Madras Station – PHWR	Thermal process ~7,600 t/day Thermal process/RO ~6,300 t/day	2012 – Operating 2002 – Operating
Japan	Ehime Ikata-3 — PWR Fukui Ohi 4 — PWR Fukui Takahama — PWR	Reverse osmosis ~2,000 t/day Reverse osmosis ~2,600 t/day Thermal process ~1,000 t/day	1994 – Operating 1989 – Operating 1983 – Operating
Pakistan	Karachi NPP – PHWR	Thermal process/RO ~2,000 t/day	2009 – Operating
Russia	Rostov NPP – PWR	Thermal process ~9,600 t/day	2010 – Operating
USA	DCPP NPP - PWR	Reverse osmosis ~2,500 t/day	1985 – Operating
Kazakhstan	Mangyshlak NPP – SFR	Thermal process ~80,000 t/day	1972 – 1999



History: Industrial Heat

Over 10 reactors have been used

Country	Plant		Application	Status
China	Tianwan NPP	– PWR	Petrochemical – 248°C, 600 t/h steam	2024 – Operating
Switzerland	Beznau NPP Gösgen NPP	– PWR – PWR	Paper – 60 t/h steam Cardboard – 200°C, 45 MWt, 70t/h steam	1984 – Operating 1979 – Operating
Canada	Bruce A NPP	– PHWR	Heavy water – 750 MW _t plastic, agriculture, ethanol – 72 MW _t	1972 – 2006
Germany	Stade	– PWR	Salt refinery – 270°C, 60 t/h steam	1984 – 2003
Norway	Halden	– BWR	Pulp/Paper mill – 20 MW _t , 60 t/h steam	1964 – 2018



Heat Applications

IAEA - "Opportunities for Cogeneration with Nuclear Energy" NP-T-4.1, 2017

GIF – "Generation IV Roadmap – Crosscutting Energy Products R&D Scope Report", 2022

GIF reactors

Non-Electric Applications Public Database

Initial database completed in 2023 and comprises an initial inventory of NEANH activities.

Global repository of activities relevant to non-electric applications coupled with nuclear energy systems.

Database includes information on relevant activities in the following areas:

- 1. Case Studies
- 2. Collaborative initiatives
- 3. Past or existing demonstration projects (or relevant commercial systems)
- 4. Planned demonstrations or commercial systems
- 5. Modelling tools

Plans to finalise digital database in 2025

In-person workshops

Biennial Workshops

October 3, 2022. Toronto Ontario Canada. 150 participants.

- Held in conjunction with the GIF industry Forum
- Co-organised by the International Framework for Nuclear Energy Cooperation
- On the margins of the Gen-IV and Small Reactors (G4SR) conference.
- Key Findings:
 - There are historic precedents for coupling other technologies with nuclear technology.
 - There is a significant need for the development and sharing of detailed data by relevant parties, including by building demonstration projects.
 - In addition to high temperature heat, there is significant demand for heat applications below 550°C.
 - There are a range of options for owner-operator models. Energy end-users do not desire to own and operate a reactor themselves or deal with the waste produced.
 - Uncertainties were voiced over costs and regulatory processes.

Biennial Workshops

April 26, 2024. Busan, Korea. 75 participants.

- Hosted by Korean Nuclear Industry Association (KAIF) and the Korea Nuclear International Cooperation Foundation (KONICOF)
- Co-organised with Korea Atomic Energy Research Institute (KAERI)
- On the margins of the Korea Atomic Power (KAP) Annual Conference.
- Key Findings:
 - Coordination among international initiatives to share information and leverage complimentary interests.
 - Honest communication about readiness and timelines of this technologies to build confidence.
 - End users emphasize commercial viability via demonstration. There is strong demand for large-scale clean heat.
 - Analysis of the overall hydrogen value chain and integrated system operation is needed to identify the competitiveness of nuclear energy to produce hydrogen.
 - There are existing tools that could help industrial end users assess the opportunity in nuclear, including through research institutions in GIF member countries and the IAEA.

Special Sessions

- May 2023, Sustainable Nuclear Energy Technology Platform (SNETP) forum workshop on Non-Electric and Hybrid Energy Systems in Gothenburg, Sweden.
- **January 2024,** 1st Joint IEA-GIF Meeting on H2 from Nuclear Energy and NEANH System Analysis workshop in Idaho Falls, USA.
- February 2024, Senior Industry Advisory Panel (SIAP) Special Session on NEANH in Ottawa, Canada.
- **January 2025,** 2nd Joint IEA-GIF-NEA Workshop on H2 from Nuclear Energy and Joint System Analysis Workshop in Paris, France.

Engagement with industry end users and regulators

2025 Engagement Activities

Industrial End-User Virtual Workshop

Focus on regulatory readiness perspectives

17-18 June 2025

NECA Deep Dive

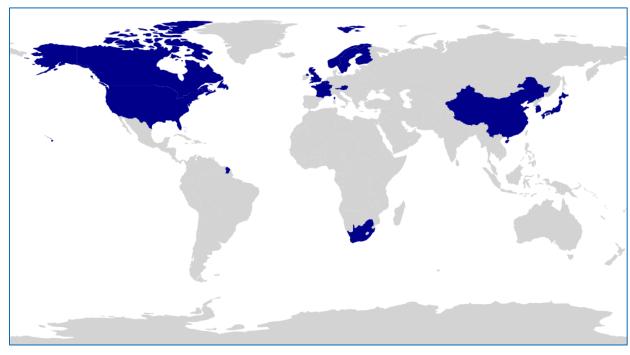
On the margins of the EG/PG meeting in Busan, Korea

October 13-17, 2025

Regulator Virtual Workshop

Informed by end user engagement

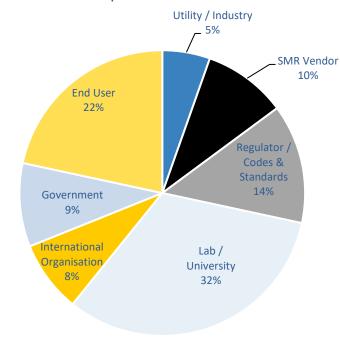
12-13 November 2025



Non-Electric & Cogeneration Virtual Workshop with End Users

- This two-day virtual event brought together industrial energy end users, regulators, and technology vendors to discuss non-electric and cogeneration applications of nuclear energy
- Invitation-only, following Chatham house rules to enable open discussion and information sharing
- Sessions:
 - 1. Operational experience with non-electric systems
 - 2. District heating and industrial heating networks
 - 3. Diversity of non-electric and cogeneration applications of nuclear energy
 - 4. Opportunity for process industries

Geographic distribution of the 74 attendees in 14 countries:


Participation from: United Kingdom (15), France (15), Canada (11), Korea (7), United States (7), and China (5), as well as participation from Sweden, South Africa, Norway, the Netherlands, Japan, Austria, Finland, and Belgium.

Non-Electric & Cogeneration Virtual Workshop with End Users Key findings

- CHP is mature but deployment depends on local conditions
- Experience from past and current projects shows that close physical and functional integration between reactors and industrial facilities requires coordination between multiple industries
- Demonstration projects critical for confidence and regulatory clarity
- Process industries well-positioned for FOAK projects
- Public trust and policy evolution are essential

Audience composition:

Non-Electric & Cogeneration Virtual Workshop with End Users

- Full workshop summary available on the event webpage:
 - www.gen-4.org/resources/events/non-electriccogeneration-virtual-workshop-end-users
- The NECA WG continues to engage with end users bilaterally to:
 - support regulatory engagement activities in November 2025
 - Update the programme of work for NECA starting from 2026

GENUV International Forum Expertise | Collaboration | Excellence

Workshop Proceedings

25

Non-Electric & Cogeneration Virtual Workshop with End Users

WORKSHOP SYNOPSIS AND FINDINGS

17-18 June 2025; 13:00–16:00 CEST Virtual

Contents

Workshop Overview and Key Findings
Key Insights from the Workshop
Workshop Overview
Workshop Summary
Day 1 Opening Session
Session 1: Operational experience with non-electric systems
Session 2: District heating and industrial heating networks
Day 1 discussion
Day 2 Opening Session
Session 3: Diversity of non-electric and cogeneration applications of nuclear energy
Session 4: Opportunity for process industries
Day 2 discussion.
Agenda for the Non-Electric & Cogeneration Virtual Workshop with End Users

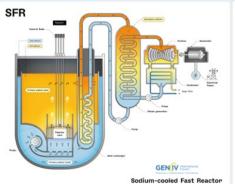
Workshop Overview and Key Findings

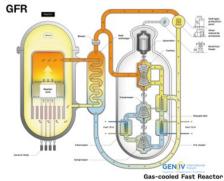
Key Insights from the Workshop

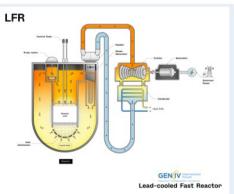
- Nuclear heat has broad industrial relevance. There are many potential applications: district heating, hydrogen, food and drink, cement, asphalt, mining, chemicals, potash, and more. Many have distinct temperature, pressure, and integration requirements.
- Combined heat and power using nuclear energy is technically mature, but deployment depends on local infrastructure and regulation. Past and current projects demonstrate feasibility, but factors such as siting, grid interaction, market changes, and permitting complexity influence their replicability today.
- Large-scale deployment of nuclear steam for industrial use is already occurring in China and
 government supported demonstrations are planned in other polities such as Japan. Demonstration
 projects are useful to build confidence and demonstrate the regulatory and financial pathways to
 commercial projects.
- There are "low-hanging fruit" where technical coupling is expected to be simple, including low-temperature electrolysis and district heating in certain jurisdictions.
- Process industries familiar with complex and large-scale infrastructure projects may be best
 positioned to lead early deployments. Sectors such as chemicals and oil and gas may be better
 suited to succeed with first-of-a-kind (FOAK) projects due to their experience with high-risk capital
 projects and onsite energy supply and demand management.
- Public trust and local engagement remain essential. Gaining social license requires proactive transparent engagement.

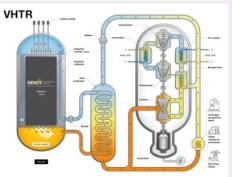
www.gen-4.org 1

Systems Analysis

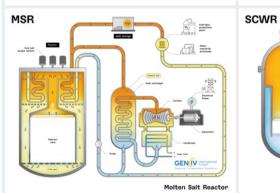


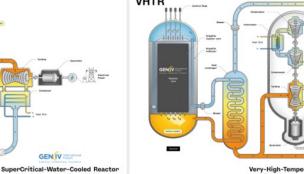






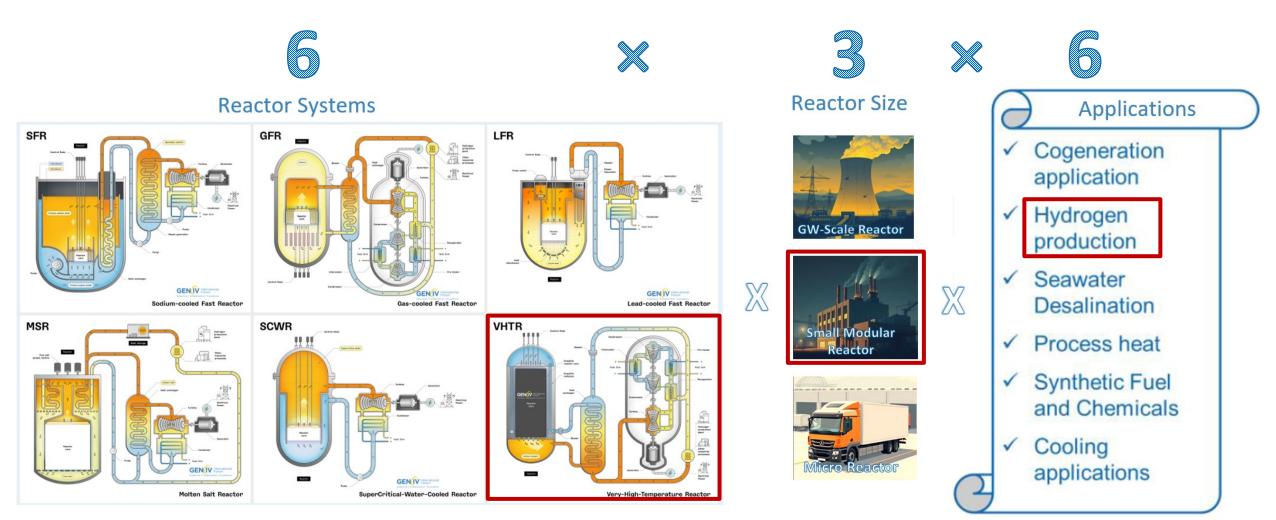
GEN IV





Applications

- Cogeneration application
- Hydrogen production
- √ Seawater Desalination
- Process heat
- ✓ Synthetic Fuel and Chemicals
- Cooling applications



NECA report System Analysis: Hydrogen Production from Nuclear Energy

Systems analysis

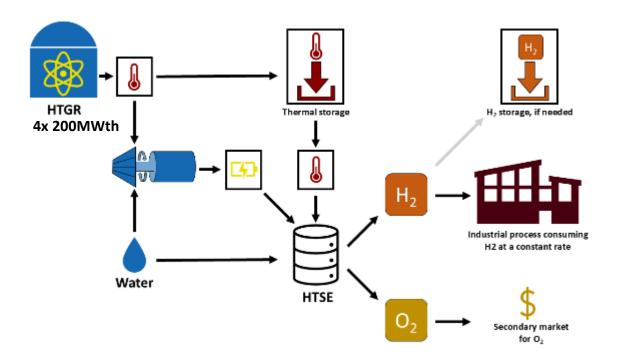
Systems analysis approach

Type 1 - Objective system modelling and analysis

- Assessment of generic system scenario using existing modelling tools
- Modelling inputs and assumptions were provided to modelling teams in GIF and NEA member countries
- "Crowd-sourced" modelling exercise

Type 2 - Subjective survey of system readiness

- Leverage existing frameworks
- Seeks expert views on the status or readiness of each system
- Identifying gaps associated with specific systems
- Could identify challenges that are common regardless of country

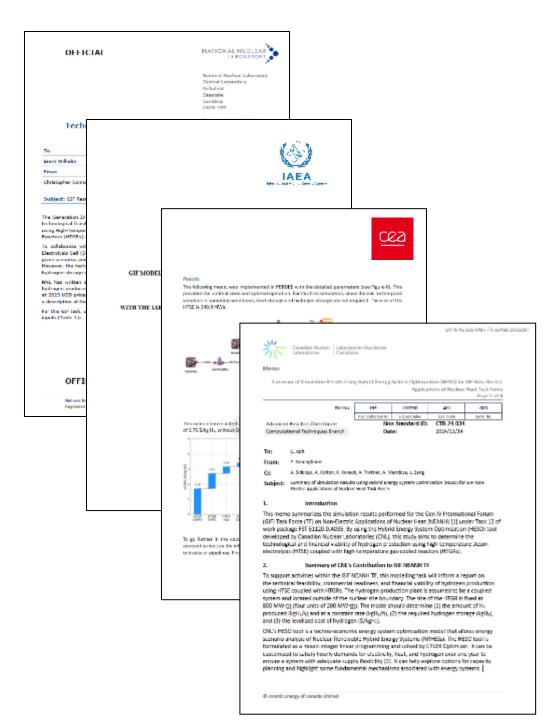


GEN IV International Forum

Modelling scenario

H₂ Production through HTSE using HTGR

 Beginning in January 2024, members of GIF and the NEA Hydrogen Value Chains Working Group worked to create a common set of modelling inputs


	Variable / Description	Value	Unit
	HTGR \		
	Power rating	4 units x 200 (800 MWth total)	MWth
etails	Outlet temperature Outlet pressure	750 7.02	deg C MPa
Reactor details	Configuration Power conversion efficiency	Prismatic 45	%
Rea	Capacity factor Fuel enrichment level	90 19.75	% % U235
	Refueling timeline	24	month
Construction	Plant lifetime Years to construct	40 3	year year
	Overnight Capital Costs O&M Costs	\$ 6,000.00 \$ 25.00	USD/kWe USD/MWh
Financial	Annual fuel costs Decommissioning and decontamination costs Annual Interest Rate	Not available Not available 5	%
		nd Thermal Transport	70
	Intermediate heat medium temperature Intermediate heat medium pressure	565 16	deg C MPa
	Thermal Energy Storage (TES) fluid TES configuration	Solar Salt Two-tank	
	Levelised cost of storage Distance between NPP and hydrogen production	0.447 1	Euro / kWh km
	HTSE V	/ariables	
	Capacity factor	90	%
	Current Density	0.5 to 1.5	A/cm^2
S	Electricity consumption	38	kWh/kg-H2
HTSE details	Thermal energy consumption	10	kWh/kg-H2
de	Stack lifetime Water consumption	4.5 72.6	year ka/s
TSE	Feedwater temperature	185-225	kg/s deg C
	Stack operating pressure	1 to 5	bar
	Stack operating temperature	765	deg C
	Stack degradation rate	1.378	%/1000 hr
ion	Hydrogen Production Plant Lifetime	35	year
Financial Construction	Years to construct	3	year
-	Overnight Capital Costs	Not available	\$M
nci	Annual O&M Costs	Not available	\$M / year
-ina	Market price for secondary O2 market	0.09	\$ / kg O2
	Annual Interest Rate	5	%

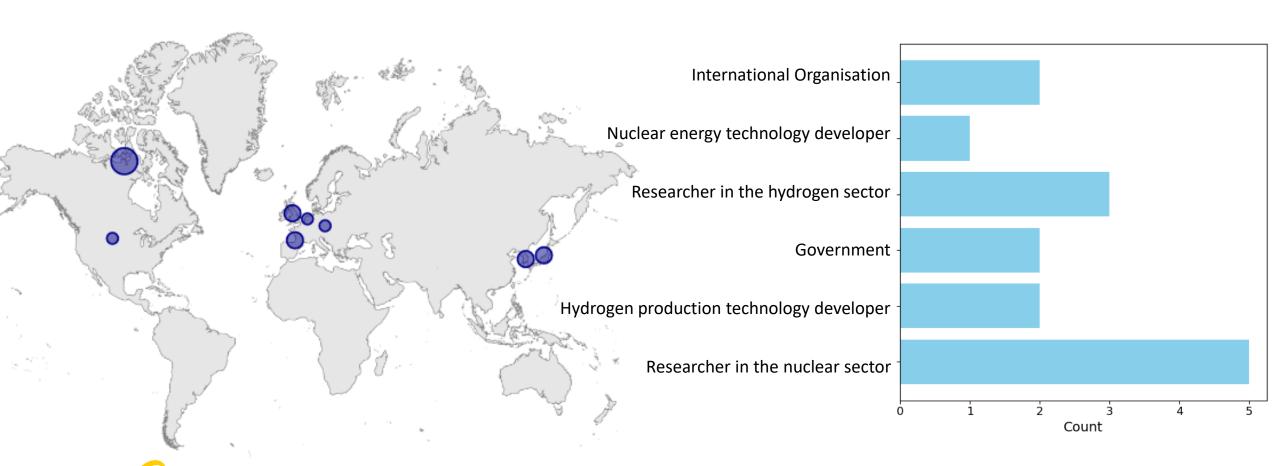
Type 1 - Objective system modelling

- The following modelling teams have delivered results, which are in this report version:
 - UK NNL technoeconomic model
 - IAEA HEEP model
 - CNL HESO model
 - France PERSEE model

Additional groups still plan to complete a model and will provide results in the near future for a V2 of the report (CNL CIPAM code, Gemini 4.0, and G4ECONs)

Type 1 - Objective system modelling

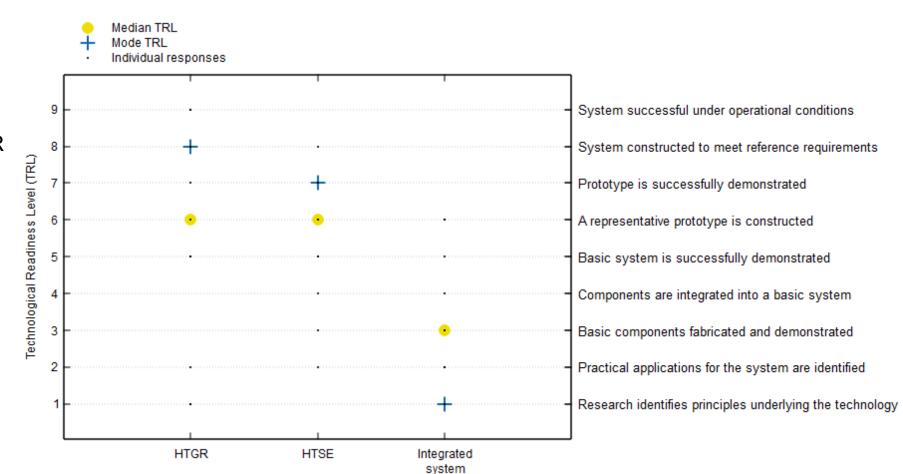
Results and discussion


	LCOH (\$/kgH2)	LCOH + O2 sales (\$/kgH ₂)	H ₂ produced (kgH ₂ per year)	Model notes
UKNNL Literature value	3.53			Previous work - FOAK under different conditions
UKNNL model			70.4 M	No storage
IAEA HEEP	3.89	3.17	66.8 M	Existing HEEP libraries, no storage
CNL HESO Scenario #1	4.52	3.72	55.6 M	No storage
CNL HESO Scenario #2	6.47	5.67	65.5 M	Hydrogen storage
CNL HESO Scenario #3	7.09	6.29	65.5 M	Thermal energy storage
CEA PERSEE model	3.76	3.04	70.7 M	No storage

- Results converged towards reasonably similar values (both in cost and quantity)
- Comparison of codes was successful for this simple case deviations and limitations would be more evident with a more specific case

Type 2 – System readiness survey

Results: Demographics

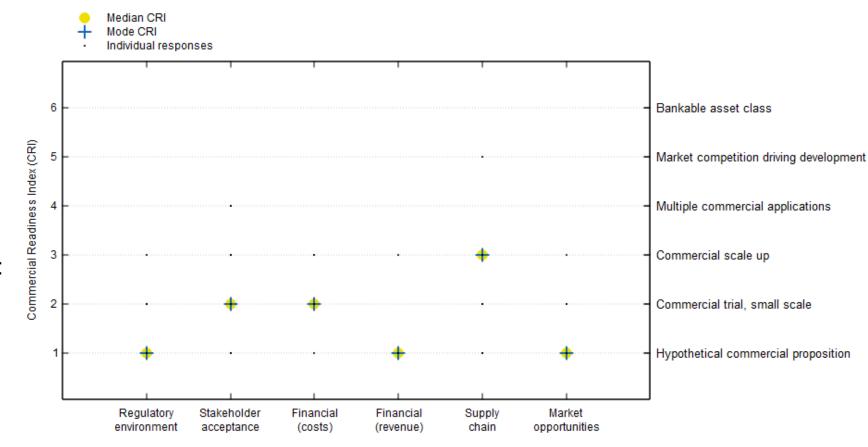


Type 2 – System readiness survey

Results: Technological Readiness

Observations

- Individual technologies are ready:
 - Evidence of commercial HTGR
 - Commercial HTSE systems, but scale needs to be demonstrated
- Integration is not ready (TRL ~1). There is a need to demonstrate integrated systems, including at scale.

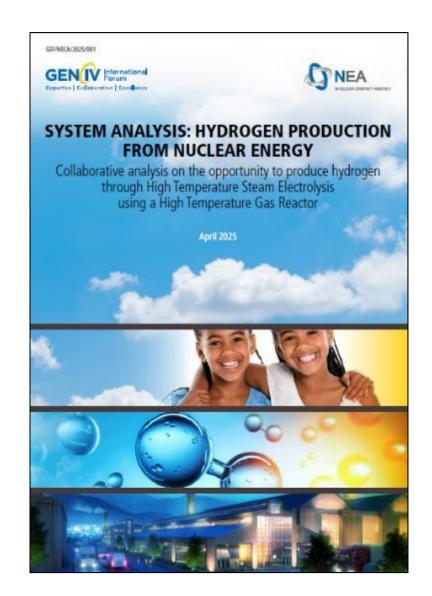


Type 2 – System readiness survey

Results: Commercial Readiness

Observations

- The largest perceived gaps are related to:
 - regulatory readiness
 - uncertainty regarding cost and revenue data
 - Identifying market demand
- Variability in timeline estimates:
 - ~2028-2035 for an integrated demonstration
 - ~2040-2050 for an integrated commercial system



Some findings and recommendations

- The opportunity for nuclear hydrogen is compelling for a large, undisturbed demand for H₂ at a single point of consumption.
- Clear role for LWRs, but increased efficiency expected for mature GenIV technologies.
- Integration very challenging merging two technologies that are not yet commercial is a challenge
 - Recommendation to integrate HTSE with existing LWRs at scale first to improve integration TRL
- HTSE is a very modular technology. Learning curve expected to "level-off" around 200MW
 - Recommendation to demonstrate a 200MW HTSE system to reach commercial maturity
- There has been recent activity among regulators in the UK, USA, Canada, France, and others.
 - Recommendation to share knowledge among regulators
 - Recommendation for NEA WGNT to consider a HTSE system in regulatory sandbox initiative

First NECA system analysis report now available

This System Analysis report contains detailed results and analysis from the crowd-sourced system analysis and expert questionnaire.

The report was co-published with the Nuclear Energy Agency, with significant contributions from the NEA Hydrogen Value Chains Working Group (H2VAL)

The report is available now on the GIF website:

 www.gen-4.org/resources/reports/system-analysishydrogen-production-nuclear-energy

Future version of this report anticipated in early 2026

Version 2 of the hydrogen report with additional input and modelling outputs provided by :

- Gemini 4.0 programme after its completion
- GIF G4ECON after adapting model
- CNL model using CIPAM code

Upcoming Webinars

Date	Title	Presenter
24 September 2025	3S interfaces of a pebble-bed small modular advanced reactor	Dr. Bryan van der Ende, Canadian Nuclear Laboratories (CNL), Canada
08 October 2025	Science for the safe disposal of nuclear waste – a German perspective	Dr. Francesca Quinto and Dr .Frank Heberling, Karlsruhe Institute of Technology, Germany
05 November 2025	Severe accidents in Sodium Fast Reactors: Safety Study Approach, Prevention and Mitigation by Design	Dr. Frederic Bertrand, Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), France

